All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.alg.util.AliasMethodSampler Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2017-2018, by Dimitrios Michail and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.alg.util;

import java.util.*;

/**
 * The alias method for sampling from a discrete probability distribution.
 * 
 * 

* The implementation is described in the paper: Michael D. Vose. A Linear Algorithm for Generating * Random Numbers with a Given Distribution. IEEE Transactions on Software Engineering, * 17(9):972--975, 1991. * *

* Initialization takes $O(n)$ where $n$ is the number of items. Sampling takes $O(1)$. * * @author Dimitrios Michail */ public class AliasMethodSampler { private final Random rng; private Comparator comparator; private final double[] prob; private final int[] alias; /** * Constructor * * @param p the probability distribution where position i of the array is $Prob(X=i)$ * @throws IllegalArgumentException in case of a non-valid probability distribution */ public AliasMethodSampler(double[] p) { this(p, new Random(), ToleranceDoubleComparator.DEFAULT_EPSILON); } /** * Constructor * * @param p the probability distribution where position $i$ of the array is $Prob(X=i)$ * @param seed seed to use for the random number generator */ public AliasMethodSampler(double[] p, long seed) { this(p, new Random(seed), ToleranceDoubleComparator.DEFAULT_EPSILON); } /** * Constructor * * @param p the probability distribution where position $i$ of the array is $Prob(X=i)$ * @param rng the random number generator * @throws IllegalArgumentException in case of a non-valid probability distribution */ public AliasMethodSampler(double[] p, Random rng) { this(p, rng, ToleranceDoubleComparator.DEFAULT_EPSILON); } /** * Constructor * * @param p the probability distribution where position $i$ of the array is $Prob(X=i)$ * @param rng the random number generator * @param epsilon tolerance used when comparing floating-point values * @throws IllegalArgumentException in case of a non-valid probability distribution */ public AliasMethodSampler(double[] p, Random rng, double epsilon) { this.rng = Objects.requireNonNull(rng, "Random number generator cannot be null"); this.comparator = new ToleranceDoubleComparator(epsilon); if (p == null || p.length < 1) { throw new IllegalArgumentException("Probabilities cannot be empty"); } double sum = 0d; for (int i = 0; i < p.length; i++) { if (comparator.compare(p[i], 0d) < 0) { throw new IllegalArgumentException("Non valid probability distribution"); } sum += p[i]; } if (comparator.compare(sum, 1d) != 0) { throw new IllegalArgumentException("Non valid probability distribution"); } /* * Initialize large and small */ int n = p.length; int[] large = new int[n]; int[] small = new int[n]; double threshold = 1d / n; int l = 0, s = 0; for (int j = 0; j < n; j++) { if (comparator.compare(p[j], threshold) > 0) { large[l++] = j; } else { small[s++] = j; } } /* * Compute probability and alias */ this.prob = new double[n]; this.alias = new int[n]; while (s != 0 && l != 0) { int j = small[--s]; int k = large[--l]; prob[j] = n * p[j]; alias[j] = k; p[k] += p[j] - threshold; if (comparator.compare(p[k], threshold) > 0) { large[l++] = k; } else { small[s++] = k; } } while (s > 0) { prob[small[--s]] = 1d; } while (l > 0) { prob[large[--l]] = 1d; } } /** * Sample a value from the distribution. * * @return a sample from the distribution */ public int next() { double u = rng.nextDouble() * prob.length; int j = (int) Math.floor(u); if (comparator.compare(u - j, prob[j]) <= 0) { return j; } else { return alias[j]; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy