com.salesforce.jgrapht.alg.util.AliasMethodSampler Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
/*
* (C) Copyright 2017-2018, by Dimitrios Michail and Contributors.
*
* JGraphT : a free Java graph-theory library
*
* See the CONTRIBUTORS.md file distributed with this work for additional
* information regarding copyright ownership.
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0, or the
* GNU Lesser General Public License v2.1 or later
* which is available at
* http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
*
* SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
*/
package com.salesforce.jgrapht.alg.util;
import java.util.*;
/**
* The alias method for sampling from a discrete probability distribution.
*
*
* The implementation is described in the paper: Michael D. Vose. A Linear Algorithm for Generating
* Random Numbers with a Given Distribution. IEEE Transactions on Software Engineering,
* 17(9):972--975, 1991.
*
*
* Initialization takes $O(n)$ where $n$ is the number of items. Sampling takes $O(1)$.
*
* @author Dimitrios Michail
*/
public class AliasMethodSampler
{
private final Random rng;
private Comparator comparator;
private final double[] prob;
private final int[] alias;
/**
* Constructor
*
* @param p the probability distribution where position i of the array is $Prob(X=i)$
* @throws IllegalArgumentException in case of a non-valid probability distribution
*/
public AliasMethodSampler(double[] p)
{
this(p, new Random(), ToleranceDoubleComparator.DEFAULT_EPSILON);
}
/**
* Constructor
*
* @param p the probability distribution where position $i$ of the array is $Prob(X=i)$
* @param seed seed to use for the random number generator
*/
public AliasMethodSampler(double[] p, long seed)
{
this(p, new Random(seed), ToleranceDoubleComparator.DEFAULT_EPSILON);
}
/**
* Constructor
*
* @param p the probability distribution where position $i$ of the array is $Prob(X=i)$
* @param rng the random number generator
* @throws IllegalArgumentException in case of a non-valid probability distribution
*/
public AliasMethodSampler(double[] p, Random rng)
{
this(p, rng, ToleranceDoubleComparator.DEFAULT_EPSILON);
}
/**
* Constructor
*
* @param p the probability distribution where position $i$ of the array is $Prob(X=i)$
* @param rng the random number generator
* @param epsilon tolerance used when comparing floating-point values
* @throws IllegalArgumentException in case of a non-valid probability distribution
*/
public AliasMethodSampler(double[] p, Random rng, double epsilon)
{
this.rng = Objects.requireNonNull(rng, "Random number generator cannot be null");
this.comparator = new ToleranceDoubleComparator(epsilon);
if (p == null || p.length < 1) {
throw new IllegalArgumentException("Probabilities cannot be empty");
}
double sum = 0d;
for (int i = 0; i < p.length; i++) {
if (comparator.compare(p[i], 0d) < 0) {
throw new IllegalArgumentException("Non valid probability distribution");
}
sum += p[i];
}
if (comparator.compare(sum, 1d) != 0) {
throw new IllegalArgumentException("Non valid probability distribution");
}
/*
* Initialize large and small
*/
int n = p.length;
int[] large = new int[n];
int[] small = new int[n];
double threshold = 1d / n;
int l = 0, s = 0;
for (int j = 0; j < n; j++) {
if (comparator.compare(p[j], threshold) > 0) {
large[l++] = j;
} else {
small[s++] = j;
}
}
/*
* Compute probability and alias
*/
this.prob = new double[n];
this.alias = new int[n];
while (s != 0 && l != 0) {
int j = small[--s];
int k = large[--l];
prob[j] = n * p[j];
alias[j] = k;
p[k] += p[j] - threshold;
if (comparator.compare(p[k], threshold) > 0) {
large[l++] = k;
} else {
small[s++] = k;
}
}
while (s > 0) {
prob[small[--s]] = 1d;
}
while (l > 0) {
prob[large[--l]] = 1d;
}
}
/**
* Sample a value from the distribution.
*
* @return a sample from the distribution
*/
public int next()
{
double u = rng.nextDouble() * prob.length;
int j = (int) Math.floor(u);
if (comparator.compare(u - j, prob[j]) <= 0) {
return j;
} else {
return alias[j];
}
}
}