All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.alg.vertexcover.RecursiveExactVCImpl Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2003-2018, by Joris Kinable and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.alg.vertexcover;

import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.alg.interfaces.*;
import com.salesforce.jgrapht.alg.util.*;

import java.util.*;
import java.util.function.*;
import java.util.stream.*;

/**
 * Finds a minimum vertex cover in a undirected graph. The implementation relies on a recursive
 * algorithm. At each recursive step, the algorithm picks a unvisited vertex v and distinguishes two
 * cases: either v has to be added to the vertex cover or all of its neighbors.
 *
 * In pseudo code, the algorithm (simplified) looks like this:
 *
 * 
 * 
 *  $VC(G)$:
 *  if $V = \emptyset$ then return $\emptyset$
 *  Choose an arbitrary node $v \in G$
 *  $G1 := (V − v, \left{ e \in E | v \not \in e \right})$
 *  $G2 := (V − v − N(v), \left{ e \in E | e \cap (N(v) \cup v)= \empty \right})$
 *  if $|v \cup VC(G1)| \leq |N(v) \cup VC(G2)|$ then
 *    return $v \cup VC(G1)$
 *  else
 *    return $N(v) \cup VC(G2)$
 * 
 * 
* * To speed up the implementation, memoization and a bounding procedure are used. The current * implementation solves instances with 150-250 vertices efficiently to optimality. * * TODO JK: determine runtime complexity and add it to class description. TODO JK: run this class * through a performance profiler * * @param the graph vertex type * @param the graph edge type * * @author Joris Kinable */ public class RecursiveExactVCImpl implements VertexCoverAlgorithm { /** Input graph **/ private Graph graph; /** Number of vertices in the graph **/ private int N; /** * Neighbor cache TODO JK: It might be worth trying to replace the neighbors index by a bitset * view. As such, all operations can be simplified to bitset operations, which may improve the * algorithm's performance. **/ private NeighborCache neighborCache; /** Map for memoization **/ private Map memo; /** * Ordered list of vertices which will be iteratively considered to be included in a matching **/ private List vertices; /** Mapping of a vertex to its index in the list of vertices **/ private Map vertexIDDictionary; /** * Maximum weight of the vertex cover. In case there is no weight assigned to the vertices, the * weight of the cover equals the cover's cardinality. */ private double upperBoundOnVertexCoverWeight; /** Indicates whether we are solving a weighted or unweighted version of the problem **/ private boolean weighted; private Map vertexWeightMap = null; ///////////// /** * Constructs a new GreedyVCImpl instance * * @param graph input graph */ public RecursiveExactVCImpl(Graph graph) { this.graph = GraphTests.requireUndirected(graph); this.vertexWeightMap = graph .vertexSet().stream().collect(Collectors.toMap(Function.identity(), vertex -> 1.0)); weighted = false; } /** * Constructs a new GreedyVCImpl instance * * @param graph input graph * @param vertexWeightMap mapping of vertex weights */ public RecursiveExactVCImpl(Graph graph, Map vertexWeightMap) { this.graph = GraphTests.requireUndirected(graph); this.vertexWeightMap = Objects.requireNonNull(vertexWeightMap); weighted = true; } @Override public VertexCoverAlgorithm.VertexCover getVertexCover() { // Initialize this.graph = GraphTests.requireUndirected(graph); memo = new HashMap<>(); vertices = new ArrayList<>(graph.vertexSet()); neighborCache = new NeighborCache<>(graph); vertexIDDictionary = new HashMap<>(); N = vertices.size(); // Sort vertices based on their weight/degree ratio in ascending order // TODO JK: Are there better orderings? vertices.sort(Comparator.comparingDouble(v -> vertexWeightMap.get(v) / graph.degreeOf(v))); for (int i = 0; i < vertices.size(); i++) vertexIDDictionary.put(vertices.get(i), i); // Calculate a bound on the maximum depth using heuristics and mathematical bounding // procedures. // TODO JK: Is there a lower bounding procedure which allows us to prematurely terminate the // search once a solution is found which is equal to the lower bound? Preferably a bounding // procedure which gets better throughout the search. upperBoundOnVertexCoverWeight = this.calculateUpperBound(); // Invoke recursive algorithm BitSetCover vertexCover = this.calculateCoverRecursively(0, new BitSet(N), 0); // Build solution Set verticesInCover = new LinkedHashSet<>(); for (int i = vertexCover.bitSetCover.nextSetBit(0); i >= 0 && i < N; i = vertexCover.bitSetCover.nextSetBit(i + 1)) verticesInCover.add(vertices.get(i)); return new VertexCoverAlgorithm.VertexCoverImpl<>(verticesInCover, vertexCover.weight); } private BitSetCover calculateCoverRecursively( int indexNextCandidate, BitSet visited, double accumulatedWeight) { // Check memoization table if (memo.containsKey(visited)) { return memo.get(visited).copy(); // Cache hit } // Find the next unvisited vertex WITH neighbors (if a vertex has no neighbors, then we // don't need to select it // because it doesn't cover any edges) int indexNextVertex = -1; Set neighbors = Collections.emptySet(); for (int index = visited.nextClearBit(indexNextCandidate); index >= 0 && index < N; index = visited.nextClearBit(index + 1)) { neighbors = new LinkedHashSet<>(neighborCache.neighborsOf(vertices.get(index))); for (Iterator it = neighbors.iterator(); it.hasNext();) // Exclude all visited // vertices if (visited.get(vertexIDDictionary.get(it.next()))) it.remove(); if (!neighbors.isEmpty()) { indexNextVertex = index; break; } } // Base case 1: all vertices have been visited if (indexNextVertex == -1) { // We've visited all vertices, return the base case BitSetCover vertexCover = new BitSetCover(N, 0); if (accumulatedWeight <= upperBoundOnVertexCoverWeight) { // Found new a solution that // matches our bound. Tighten // the bound. upperBoundOnVertexCoverWeight = accumulatedWeight - 1; } return vertexCover; // Base case 2 (pruning): this vertex cover can never be better than the best cover we // already have. Return a cover with a large weight, such that the other branch will be // preferred over this branch. } else if (accumulatedWeight >= upperBoundOnVertexCoverWeight) { return new BitSetCover(N, N); } // Recursion // TODO JK: Can we use a lower bound or estimation which of these 2 branches produces a // better solution? If one of them is more likely to produce a better solution, // then that branch should be explored first! Futhermore, if the lower bound+accumulated // cost > upperBoundOnVertexCoverWeight, then we may prune. // Create 2 branches (N(v) denotes the set of neighbors of v. G_{v} indicates the graph // obtained by removing vertex v and all vertices incident to it.): // Right branch (N(v) are added to the cover, and we solve for G_{N(v) \cup v }$.): BitSet visitedRightBranch = (BitSet) visited.clone(); visitedRightBranch.set(indexNextVertex); for (V v : neighbors) visitedRightBranch.set(vertexIDDictionary.get(v)); double weight = this.getWeight(neighbors); BitSetCover rightCover = calculateCoverRecursively( indexNextVertex + 1, visitedRightBranch, accumulatedWeight + weight); List neighborsIndices = neighbors.stream().map(vertexIDDictionary::get).collect(Collectors.toList()); rightCover.addAllVertices(neighborsIndices, weight); // Left branch (vertex v is added to the cover, and we solve for G_{v}): BitSet visitedLeftBranch = (BitSet) visited.clone(); visitedLeftBranch.set(indexNextVertex); weight = vertexWeightMap.get(vertices.get(indexNextVertex)); BitSetCover leftCover = calculateCoverRecursively( indexNextVertex + 1, visitedLeftBranch, accumulatedWeight + weight); leftCover.addVertex(indexNextVertex, weight); // Delayed update of the left cover // Return the best branch if (leftCover.weight <= rightCover.weight) { memo.put(visited, leftCover.copy()); return leftCover; } else { memo.put(visited, rightCover.copy()); return rightCover; } } /** * Returns the weight of a collection of vertices. In case of the unweighted vertex cover * problem, the return value is the cardinality of the collection. In case of the weighted * version, the return value is the sum of the weights of the vertices * * @param vertices vertices * @return the total weight of the vertices in the collection. */ private double getWeight(Collection vertices) { if (weighted) { return vertices.stream().map(vertexWeightMap::get).reduce(0d, Double::sum); } else { return vertices.size(); } } /** * Calculates a cheap upper bound on the optimum solution. Currently, we return the best * solution found by either the greedy heuristic, or Clarkson's 2-approximation. Neither of * these 2 algorithms dominates the other. //TODO JK: Are there better bounding procedures? */ private double calculateUpperBound() { return Math.min( new GreedyVCImpl<>(graph, vertexWeightMap).getVertexCover().getWeight(), new ClarksonTwoApproxVCImpl<>(graph, vertexWeightMap).getVertexCover().getWeight()); } /** * Helper class which represents a vertex cover as a space efficient BitSet */ protected class BitSetCover { protected BitSet bitSetCover; protected double weight; /** * Construct a new empty vertex cover as a BitSet. * * @param size initial capacity of the BitSet * @param initialWeight the initial weight */ protected BitSetCover(int size, int initialWeight) { bitSetCover = new BitSet(size); this.weight = initialWeight; } /** * Copy constructor * * @param vertexCover the input vertex cover to copy */ protected BitSetCover(BitSetCover vertexCover) { this.bitSetCover = (BitSet) vertexCover.bitSetCover.clone(); this.weight = vertexCover.weight; } /** * Copy a vertex cover. * * @return a copy of the vertex cover */ protected BitSetCover copy() { return new BitSetCover(this); } /** * Add a vertex in the vertex cover. * * @param vertexIndex the index of the vertex * @param weight the weight of the vertex */ protected void addVertex(int vertexIndex, double weight) { bitSetCover.set(vertexIndex); this.weight += weight; } /** * Add multiple vertices in the vertex cover. * * @param vertexIndices the index of the vertices * @param totalWeight the total weight of the vertices */ protected void addAllVertices(List vertexIndices, double totalWeight) { vertexIndices.forEach(bitSetCover::set); this.weight += totalWeight; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy