All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.generate.GnpRandomBipartiteGraphGenerator Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2016-2018, by Dimitrios Michail and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.generate;

import com.salesforce.jgrapht.*;

import java.util.*;

/**
 * Create a random bipartite graph based on the $G(n, p)$ Erdős–Rényi model. See the Wikipedia
 * article for details and references about
 * Random Graphs and the
 * Erdős–Rényi model
 * .
 * 
 * The user provides the sizes $n_1$ and $n_2$ of the two partitions $(n1+n2=n)$ and the probability
 * $p$ of the existence of an edge. The generator supports both directed and undirected graphs.
 *
 * @author Dimitrios Michail
 * 
 * @param  the graph vertex type
 * @param  the graph edge type
 * 
 * @see GnmRandomBipartiteGraphGenerator
 */
public class GnpRandomBipartiteGraphGenerator
    implements
    GraphGenerator
{
    private final Random rng;
    private final int n1;
    private final int n2;
    private final double p;

    private Map partitionA;
    private Map partitionB;

    /**
     * Create a new random bipartite graph generator. The generator uses the $G(n, p)$ model when $n
     * = n_1 + n_2$ and the bipartite graph has one partition with size $n_1$ and one partition with
     * size $n_2$. An edge between two vertices of different partitions is included with probability
     * $p$ independent of all other edges.
     * 
     * @param n1 number of vertices of the first partition
     * @param n2 number of vertices of the second partition
     * @param p edge probability
     */
    public GnpRandomBipartiteGraphGenerator(int n1, int n2, double p)
    {
        this(n1, n2, p, new Random());
    }

    /**
     * Create a new random bipartite graph generator. The generator uses the $G(n, p)$ model when $n
     * = n_1 + n_2$, the bipartite graph has partition with size $n_1$ and a partition with size
     * $n_2$. An edge between two vertices of different partitions is included with probability $p$
     * independent of all other edges.
     * 
     * @param n1 number of vertices of the first partition
     * @param n2 number of vertices of the second partition
     * @param p edge probability
     * @param seed seed for the random number generator
     */
    public GnpRandomBipartiteGraphGenerator(int n1, int n2, double p, long seed)
    {
        this(n1, n2, p, new Random(seed));
    }

    /**
     * Create a new random bipartite graph generator. The generator uses the $G(n, p)$ model when $n
     * = n_1 + n_2$, the bipartite graph has partition with size $n_1$ and a partition with size
     * $n_2$. An edge between two vertices of different partitions is included with probability $p$
     * independent of all other edges.
     * 
     * @param n1 number of vertices of the first partition
     * @param n2 number of vertices of the second partition
     * @param p edge probability
     * @param rng random number generator
     */
    public GnpRandomBipartiteGraphGenerator(int n1, int n2, double p, Random rng)
    {
        if (n1 < 0) {
            throw new IllegalArgumentException("number of vertices must be non-negative");
        }
        this.n1 = n1;
        if (n2 < 0) {
            throw new IllegalArgumentException("number of vertices must be non-negative");
        }
        this.n2 = n2;
        if (p < 0.0 || p > 1.0) {
            throw new IllegalArgumentException("not valid probability of edge existence");
        }
        this.p = p;
        this.rng = Objects.requireNonNull(rng);
    }

    /**
     * Generates a random bipartite graph.
     * 
     * @param target the target graph
     * @param resultMap not used by this generator, can be null
     */
    @Override
    public void generateGraph(Graph target, Map resultMap)
    {
        if (n1 + n2 == 0) {
            return;
        }

        // create vertices
        int previousVertexSetSize = target.vertexSet().size();

        partitionA = new LinkedHashMap<>(n1);
        for (int i = 0; i < n1; i++) {
            partitionA.put(i, target.addVertex());
        }

        partitionB = new LinkedHashMap<>(n2);
        for (int i = 0; i < n2; i++) {
            partitionB.put(i, target.addVertex());
        }

        if (target.vertexSet().size() != previousVertexSetSize + n1 + n2) {
            throw new IllegalArgumentException(
                "Vertex factory did not produce " + (n1 + n2) + " distinct vertices.");
        }

        // check if graph is directed
        boolean isDirected = target.getType().isDirected();

        // create edges
        for (int i = 0; i < n1; i++) {
            V s = partitionA.get(i);
            for (int j = 0; j < n2; j++) {
                V t = partitionB.get(j);

                // s->t
                if (rng.nextDouble() < p) {
                    target.addEdge(s, t);
                }

                if (isDirected) {
                    // t->s
                    if (rng.nextDouble() < p) {
                        target.addEdge(t, s);
                    }
                }
            }
        }

    }

    /**
     * Returns the first partition of vertices in the bipartite graph. This partition is guaranteed
     * to be smaller than or equal in size to the second partition.
     * 
     * @return one partition of the bipartite graph
     */
    public Set getFirstPartition()
    {
        if (partitionA.size() <= partitionB.size())
            return new LinkedHashSet<>(partitionA.values());
        else
            return new LinkedHashSet<>(partitionB.values());
    }

    /**
     * Returns the second partitions of vertices in the bipartite graph. This partition is
     * guaranteed to be larger than or equal in size to the first partition.
     * 
     * @return one partition of the bipartite graph
     */
    public Set getSecondPartition()
    {
        if (partitionB.size() >= partitionA.size())
            return new LinkedHashSet<>(partitionB.values());
        else
            return new LinkedHashSet<>(partitionA.values());
    }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy