All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.generate.NamedGraphGenerator Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2017-2018, by Joris Kinable and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package com.salesforce.jgrapht.generate;

import com.salesforce.jgrapht.*;
import com.salesforce.jgrapht.graph.*;
import com.salesforce.jgrapht.graph.builder.*;
import com.salesforce.jgrapht.util.*;

import java.util.*;

/**
 * Collection of commonly used named graphs
 *
 * @author Joris Kinable
 *
 * @param  graph vertex type
 * @param  graph edge type
 */
public class NamedGraphGenerator
{
    private Map vertexMap;

    /**
     * Constructs a new generator for named graphs
     */
    public NamedGraphGenerator()
    {
        vertexMap = new HashMap<>();
    }

    // -------------Doyle Graph-----------//
    /**
     * Generate the Doyle Graph
     * 
     * @see #generateDoyleGraph
     * @return Doyle Graph
     */
    public static Graph doyleGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateDoyleGraph(g);
        return g;
    }

    /**
     * Generates a Doyle Graph. The Doyle
     * graph, sometimes also known as the Holt graph (Marušič et al. 2005), is the quartic symmetric
     * graph on 27 nodes
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateDoyleGraph(Graph targetGraph)
    {
        vertexMap.clear();
        for (int i = 0; i < 9; i++)
            for (int j = 0; j < 3; j++) {
                this.addEdge(
                    targetGraph, doyleHash(i, j), doyleHash(mod(4 * i + 1, 9), mod(j - 1, 3)));
                this.addEdge(
                    targetGraph, doyleHash(i, j), doyleHash(mod(4 * i - 1, 9), mod(j - 1, 3)));
                this.addEdge(
                    targetGraph, doyleHash(i, j), doyleHash(mod(7 * i + 7, 9), mod(j + 1, 3)));
                this.addEdge(
                    targetGraph, doyleHash(i, j), doyleHash(mod(7 * i - 7, 9), mod(j + 1, 3)));
            }
    }

    private int doyleHash(int u, int v)
    {
        return u * 19 + v;
    }

    private int mod(int u, int m)
    {
        int r = u % m;
        return r < 0 ? r + m : r;
    }

    // -------------Generalized Petersen Graph-----------//

    /**
     * @see GeneralizedPetersenGraphGenerator
     * @param n Generalized Petersen graphs $GP(n,k)$
     * @param k Generalized Petersen graphs $GP(n,k)$
     * @return Generalized Petersen Graph
     */
    public static Graph generalizedPetersenGraph(int n, int k)
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateGeneralizedPetersenGraph(g, n, k);
        return g;
    }

    private void generateGeneralizedPetersenGraph(Graph targetGraph, int n, int k)
    {
        GeneralizedPetersenGraphGenerator gpgg =
            new GeneralizedPetersenGraphGenerator<>(n, k);
        gpgg.generateGraph(targetGraph);
    }

    // -------------Petersen Graph-----------//
    /**
     * @see #generatePetersenGraph
     * @return Petersen Graph
     */
    public static Graph petersenGraph()
    {
        return generalizedPetersenGraph(5, 2);
    }

    /**
     * Generates a Petersen Graph. The
     * Petersen Graph is a named graph that consists of 10 vertices and 15 edges, usually drawn as a
     * five-point star embedded in a pentagon. It is the generalized Petersen graph $GP(5,2)$
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generatePetersenGraph(Graph targetGraph)
    {
        generateGeneralizedPetersenGraph(targetGraph, 5, 2);
    }

    // -------------Dürer Graph-----------//
    /**
     * @see #generateDürerGraph
     * @return Dürer Graph
     */
    public static Graph dürerGraph()
    {
        return generalizedPetersenGraph(6, 2);
    }

    /**
     * Generates a Dürer Graph. The
     * Dürer graph is the skeleton of Dürer's solid, which is the generalized Petersen graph
     * $GP(6,2)$.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateDürerGraph(Graph targetGraph)
    {
        generateGeneralizedPetersenGraph(targetGraph, 6, 2);
    }

    // -------------Dodecahedron Graph-----------//
    /**
     * @see #generateDodecahedronGraph
     * @return Dodecahedron Graph
     */
    public static Graph dodecahedronGraph()
    {
        return generalizedPetersenGraph(10, 2);
    }

    /**
     * Generates a Dodecahedron
     * Graph. The skeleton of the dodecahedron (the vertices and edges) form a graph. It is one
     * of 5 Platonic graphs, each a skeleton of its Platonic solid. It is the generalized Petersen
     * graph $GP(10,2)$
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateDodecahedronGraph(Graph targetGraph)
    {
        generateGeneralizedPetersenGraph(targetGraph, 10, 2);
    }

    // -------------Desargues Graph-----------//
    /**
     * @see #generateDesarguesGraph
     * @return Desargues Graph
     */
    public static Graph desarguesGraph()
    {
        return generalizedPetersenGraph(10, 3);
    }

    /**
     * Generates a Desargues Graph.
     * The Desargues graph is a cubic symmetric graph distance-regular graph on 20 vertices and 30
     * edges. It is the generalized Petersen graph $GP(10,3)$
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateDesarguesGraph(Graph targetGraph)
    {
        generateGeneralizedPetersenGraph(targetGraph, 10, 3);
    }

    // -------------Nauru Graph-----------//
    /**
     * @see #generateNauruGraph
     * @return Nauru Graph
     */
    public static Graph nauruGraph()
    {
        return generalizedPetersenGraph(12, 5);
    }

    /**
     * Generates a Nauru Graph. The Nauru
     * graph is a symmetric bipartite cubic graph with 24 vertices and 36 edges. It is the
     * generalized Petersen graph $GP(12,5)$
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateNauruGraph(Graph targetGraph)
    {
        generateGeneralizedPetersenGraph(targetGraph, 12, 5);
    }

    // -------------Möbius-Kantor Graph-----------//
    /**
     * @see #generateMöbiusKantorGraph
     * @return Möbius-Kantor Graph
     */
    public static Graph möbiusKantorGraph()
    {
        return generalizedPetersenGraph(8, 3);
    }

    /**
     * Generates a Möbius-Kantor
     * Graph. The unique cubic symmetric graph on 16 nodes. It is the generalized Petersen graph
     * $GP(8,3)$
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateMöbiusKantorGraph(Graph targetGraph)
    {
        generateGeneralizedPetersenGraph(targetGraph, 8, 3);
    }

    // -------------Bull Graph-----------//
    /**
     * @see #generateBullGraph
     * @return Bull Graph
     */
    public static Graph bullGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateBullGraph(g);
        return g;
    }

    /**
     * Generates a Bull Graph. The bull
     * graph is a simple graph on 5 nodes and 5 edges whose name derives from its resemblance to a
     * schematic illustration of a bull or ram
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateBullGraph(Graph targetGraph)
    {
        vertexMap.clear();
        this.addEdge(targetGraph, 0, 1);
        this.addEdge(targetGraph, 1, 2);
        this.addEdge(targetGraph, 2, 3);
        this.addEdge(targetGraph, 1, 3);
        this.addEdge(targetGraph, 3, 4);
    }

    // -------------Butterfly Graph-----------//
    /**
     * @see #generateButterflyGraph
     * @return Butterfly Graph
     */
    public static Graph butterflyGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateButterflyGraph(g);
        return g;
    }

    /**
     * Generates a Butterfly Graph.
     * This graph is also known as the "bowtie graph" (West 2000, p. 12). It is isomorphic to the
     * friendship graph $F_2$.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateButterflyGraph(Graph targetGraph)
    {
        new WindmillGraphsGenerator(WindmillGraphsGenerator.Mode.DUTCHWINDMILL, 2, 3)
            .generateGraph(targetGraph);
    }

    // -------------Claw Graph-----------//
    /**
     * @see #generateClawGraph
     * @return Claw Graph
     */
    public static Graph clawGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateClawGraph(g);
        return g;
    }

    /**
     * Generates a Claw Graph. The
     * complete bipartite graph $K_{1,3}$ is a tree known as the "claw."
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateClawGraph(Graph targetGraph)
    {
        new StarGraphGenerator(4).generateGraph(targetGraph);
    }

    // -------------Bucky ball Graph-----------//
    /**
     * @see #generateBuckyBallGraph
     * @return Bucky ball Graph
     */
    public static Graph buckyBallGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateBuckyBallGraph(g);
        return g;
    }

    /**
     * Generates a Bucky ball Graph. This
     * graph is a 3-regular 60-vertex planar graph. Its vertices and edges correspond precisely to
     * the carbon atoms and bonds in buckminsterfullerene. When embedded on a sphere, its 12
     * pentagon and 20 hexagon faces are arranged exactly as the sections of a soccer ball.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateBuckyBallGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 2 }, { 0, 48 }, { 0, 59 }, { 1, 3 }, { 1, 9 }, { 1, 58 }, { 2, 3 },
            { 2, 36 }, { 3, 17 }, { 4, 6 }, { 4, 8 }, { 4, 12 }, { 5, 7 }, { 5, 9 }, { 5, 16 },
            { 6, 7 }, { 6, 20 }, { 7, 21 }, { 8, 9 }, { 8, 56 }, { 10, 11 }, { 10, 12 }, { 10, 20 },
            { 11, 27 }, { 11, 47 }, { 12, 13 }, { 13, 46 }, { 13, 54 }, { 14, 15 }, { 14, 16 },
            { 14, 21 }, { 15, 25 }, { 15, 41 }, { 16, 17 }, { 17, 40 }, { 18, 19 }, { 18, 20 },
            { 18, 26 }, { 19, 21 }, { 19, 24 }, { 22, 23 }, { 22, 31 }, { 22, 34 }, { 23, 25 },
            { 23, 38 }, { 24, 25 }, { 24, 30 }, { 26, 27 }, { 26, 30 }, { 27, 29 }, { 28, 29 },
            { 28, 31 }, { 28, 35 }, { 29, 44 }, { 30, 31 }, { 32, 34 }, { 32, 39 }, { 32, 50 },
            { 33, 35 }, { 33, 45 }, { 33, 51 }, { 34, 35 }, { 36, 37 }, { 36, 40 }, { 37, 39 },
            { 37, 52 }, { 38, 39 }, { 38, 41 }, { 40, 41 }, { 42, 43 }, { 42, 46 }, { 42, 55 },
            { 43, 45 }, { 43, 53 }, { 44, 45 }, { 44, 47 }, { 46, 47 }, { 48, 49 }, { 48, 52 },
            { 49, 53 }, { 49, 57 }, { 50, 51 }, { 50, 52 }, { 51, 53 }, { 54, 55 }, { 54, 56 },
            { 55, 57 }, { 56, 58 }, { 57, 59 }, { 58, 59 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Clebsch Graph-----------//
    /**
     * @see #generateClebschGraph
     * @return Clebsch Graph
     */
    public static Graph clebschGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateClebschGraph(g);
        return g;
    }

    /**
     * Generates a Clebsch Graph. The
     * Clebsch graph, also known as the Greenwood-Gleason graph (Read and Wilson, 1998, p. 284), is
     * a strongly regular quintic graph on 16 vertices and 40 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateClebschGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int x = 0;
        for (int i = 0; i < 8; i++) {
            addEdge(targetGraph, x % 16, (x + 1) % 16);
            addEdge(targetGraph, x % 16, (x + 6) % 16);
            addEdge(targetGraph, x % 16, (x + 8) % 16);
            x++;
            addEdge(targetGraph, x % 16, (x + 3) % 16);
            addEdge(targetGraph, x % 16, (x + 2) % 16);
            addEdge(targetGraph, x % 16, (x + 8) % 16);
            x++;
        }
    }

    // -------------Grötzsch Graph-----------//
    /**
     * @see #generateGrötzschGraph
     * @return Grötzsch Graph
     */
    public static Graph grötzschGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateGrötzschGraph(g);
        return g;
    }

    /**
     * Generates a Grötzsch Graph.
     * The Grötzsch graph is smallest triangle-free graph with chromatic number four.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateGrötzschGraph(Graph targetGraph)
    {
        vertexMap.clear();
        for (int i = 1; i < 6; i++)
            addEdge(targetGraph, 0, i);
        addEdge(targetGraph, 10, 6);
        for (int i = 6; i < 10; i++) {
            addEdge(targetGraph, i, i + 1);
            addEdge(targetGraph, i, i - 4);
        }
        addEdge(targetGraph, 10, 1);
        for (int i = 7; i < 11; i++)
            addEdge(targetGraph, i, i - 6);
        addEdge(targetGraph, 6, 5);
    }

    // -------------Bidiakis cube Graph-----------//
    /**
     * @see #generateBidiakisCubeGraph
     * @return Bidiakis cube Graph
     */
    public static Graph bidiakisCubeGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateBidiakisCubeGraph(g);
        return g;
    }

    /**
     * Generates a Bidiakis cube Graph.
     * The 12-vertex graph consisting of a cube in which two opposite faces (say, top and bottom)
     * have edges drawn across them which connect the centers of opposite sides of the faces in such
     * a way that the orientation of the edges added on top and bottom are perpendicular to each
     * other.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateBidiakisCubeGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 6 }, { 0, 11 }, { 1, 2 }, { 1, 5 }, { 2, 3 }, { 2, 10 },
            { 3, 4 }, { 3, 9 }, { 4, 5 }, { 4, 8 }, { 5, 6 }, { 6, 7 }, { 7, 8 }, { 7, 11 },
            { 8, 9 }, { 9, 10 }, { 10, 11 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------First Blanusa Snark Graph-----------//
    /**
     * @see #generateBlanusaFirstSnarkGraph
     * @return First Blanusa Snark Graph
     */
    public static Graph blanusaFirstSnarkGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateBlanusaFirstSnarkGraph(g);
        return g;
    }

    /**
     * Generates the First Blanusa Snark
     * Graph. The Blanusa graphs are two snarks on 18 vertices and 27 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateBlanusaFirstSnarkGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 5 }, { 0, 16 }, { 1, 2 }, { 1, 17 }, { 2, 3 }, { 2, 14 },
            { 3, 4 }, { 3, 8 }, { 4, 5 }, { 4, 17 }, { 5, 6 }, { 6, 7 }, { 6, 11 }, { 7, 8 },
            { 7, 17 }, { 8, 9 }, { 9, 10 }, { 9, 13 }, { 10, 11 }, { 10, 15 }, { 11, 12 },
            { 12, 13 }, { 12, 16 }, { 13, 14 }, { 14, 15 }, { 15, 16 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Second Blanusa Snark Graph-----------//
    /**
     * @see #generateBlanusaSecondSnarkGraph
     * @return Second Blanusa Snark Graph
     */
    public static Graph blanusaSecondSnarkGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateBlanusaSecondSnarkGraph(g);
        return g;
    }

    /**
     * Generates the Second Blanusa Snark
     * Graph. The Blanusa graphs are two snarks on 18 vertices and 27 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateBlanusaSecondSnarkGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 2 }, { 0, 14 }, { 1, 5 }, { 1, 11 }, { 2, 3 }, { 2, 6 },
            { 3, 4 }, { 3, 9 }, { 4, 5 }, { 4, 7 }, { 5, 6 }, { 6, 8 }, { 7, 8 }, { 7, 17 },
            { 8, 9 }, { 9, 15 }, { 10, 11 }, { 10, 14 }, { 10, 16 }, { 11, 12 }, { 12, 13 },
            { 12, 17 }, { 13, 14 }, { 13, 15 }, { 15, 16 }, { 16, 17 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Double Star Snark Graph-----------//
    /**
     * @see #generateDoubleStarSnarkGraph
     * @return Double Star Snark Graph
     */
    public static Graph doubleStarSnarkGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateDoubleStarSnarkGraph(g);
        return g;
    }

    /**
     * Generates the Double Star Snark
     * Graph. A snark on 30 vertices with edge chromatic number 4.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateDoubleStarSnarkGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 14 }, { 0, 15 }, { 1, 2 }, { 1, 11 }, { 2, 3 }, { 2, 7 },
            { 3, 4 }, { 3, 18 }, { 4, 5 }, { 4, 14 }, { 5, 6 }, { 5, 10 }, { 6, 7 }, { 6, 21 },
            { 7, 8 }, { 8, 9 }, { 8, 13 }, { 9, 10 }, { 9, 24 }, { 10, 11 }, { 11, 12 }, { 12, 13 },
            { 12, 27 }, { 13, 14 }, { 15, 16 }, { 15, 29 }, { 16, 20 }, { 16, 23 }, { 17, 18 },
            { 17, 25 }, { 17, 28 }, { 18, 19 }, { 19, 23 }, { 19, 26 }, { 20, 21 }, { 20, 28 },
            { 21, 22 }, { 22, 26 }, { 22, 29 }, { 23, 24 }, { 24, 25 }, { 25, 29 }, { 26, 27 },
            { 27, 28 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Brinkmann Graph-----------//
    /**
     * @see #generateBrinkmannGraph
     * @return Brinkmann Graph
     */
    public static Graph brinkmannGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateBrinkmannGraph(g);
        return g;
    }

    /**
     * Generates the Brinkmann Graph.
     * The Brinkmann graph is a weakly regular quartic graph on 21 vertices and 42 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateBrinkmannGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 2 }, { 0, 5 }, { 0, 7 }, { 0, 13 }, { 1, 3 }, { 1, 6 }, { 1, 7 },
            { 1, 8 }, { 2, 4 }, { 2, 8 }, { 2, 9 }, { 3, 5 }, { 3, 9 }, { 3, 10 }, { 4, 6 },
            { 4, 10 }, { 4, 11 }, { 5, 11 }, { 5, 12 }, { 6, 12 }, { 6, 13 }, { 7, 15 }, { 7, 20 },
            { 8, 14 }, { 8, 16 }, { 9, 15 }, { 9, 17 }, { 10, 16 }, { 10, 18 }, { 11, 17 },
            { 11, 19 }, { 12, 18 }, { 12, 20 }, { 13, 14 }, { 13, 19 }, { 14, 17 }, { 14, 18 },
            { 15, 18 }, { 15, 19 }, { 16, 19 }, { 16, 20 }, { 17, 20 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Gosset Graph-----------//
    /**
     * @see #generateGossetGraph
     * @return Gosset Graph
     */
    public static Graph gossetGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateGossetGraph(g);
        return g;
    }

    /**
     * Generates the Gosset Graph. The
     * Gosset graph is a 27-regular graph on 56 vertices which is the skeleton of the Gosset
     * polytope $3_{21}$.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateGossetGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 0, 4 }, { 0, 5 }, { 0, 6 }, { 0, 7 },
            { 0, 8 }, { 0, 9 }, { 0, 10 }, { 0, 11 }, { 0, 12 }, { 0, 13 }, { 0, 14 }, { 0, 15 },
            { 0, 16 }, { 0, 17 }, { 0, 18 }, { 0, 19 }, { 0, 20 }, { 0, 21 }, { 0, 28 }, { 0, 29 },
            { 0, 30 }, { 0, 31 }, { 0, 32 }, { 0, 33 }, { 1, 2 }, { 1, 3 }, { 1, 4 }, { 1, 5 },
            { 1, 6 }, { 1, 7 }, { 1, 8 }, { 1, 9 }, { 1, 10 }, { 1, 11 }, { 1, 12 }, { 1, 13 },
            { 1, 14 }, { 1, 15 }, { 1, 16 }, { 1, 22 }, { 1, 23 }, { 1, 24 }, { 1, 25 }, { 1, 26 },
            { 1, 28 }, { 1, 34 }, { 1, 35 }, { 1, 36 }, { 1, 37 }, { 1, 38 }, { 2, 3 }, { 2, 4 },
            { 2, 5 }, { 2, 6 }, { 2, 7 }, { 2, 8 }, { 2, 9 }, { 2, 10 }, { 2, 11 }, { 2, 12 },
            { 2, 17 }, { 2, 18 }, { 2, 19 }, { 2, 20 }, { 2, 22 }, { 2, 23 }, { 2, 24 }, { 2, 25 },
            { 2, 27 }, { 2, 29 }, { 2, 34 }, { 2, 39 }, { 2, 40 }, { 2, 41 }, { 2, 42 }, { 3, 4 },
            { 3, 5 }, { 3, 6 }, { 3, 7 }, { 3, 8 }, { 3, 9 }, { 3, 13 }, { 3, 14 }, { 3, 15 },
            { 3, 17 }, { 3, 18 }, { 3, 19 }, { 3, 21 }, { 3, 22 }, { 3, 23 }, { 3, 24 }, { 3, 26 },
            { 3, 27 }, { 3, 30 }, { 3, 35 }, { 3, 39 }, { 3, 43 }, { 3, 44 }, { 3, 45 }, { 4, 5 },
            { 4, 6 }, { 4, 7 }, { 4, 10 }, { 4, 11 }, { 4, 13 }, { 4, 14 }, { 4, 16 }, { 4, 17 },
            { 4, 18 }, { 4, 20 }, { 4, 21 }, { 4, 22 }, { 4, 23 }, { 4, 25 }, { 4, 26 }, { 4, 27 },
            { 4, 31 }, { 4, 36 }, { 4, 40 }, { 4, 43 }, { 4, 46 }, { 4, 47 }, { 5, 6 }, { 5, 8 },
            { 5, 10 }, { 5, 12 }, { 5, 13 }, { 5, 15 }, { 5, 16 }, { 5, 17 }, { 5, 19 }, { 5, 20 },
            { 5, 21 }, { 5, 22 }, { 5, 24 }, { 5, 25 }, { 5, 26 }, { 5, 27 }, { 5, 32 }, { 5, 37 },
            { 5, 41 }, { 5, 44 }, { 5, 46 }, { 5, 48 }, { 6, 9 }, { 6, 11 }, { 6, 12 }, { 6, 14 },
            { 6, 15 }, { 6, 16 }, { 6, 18 }, { 6, 19 }, { 6, 20 }, { 6, 21 }, { 6, 23 }, { 6, 24 },
            { 6, 25 }, { 6, 26 }, { 6, 27 }, { 6, 33 }, { 6, 38 }, { 6, 42 }, { 6, 45 }, { 6, 47 },
            { 6, 48 }, { 7, 8 }, { 7, 9 }, { 7, 10 }, { 7, 11 }, { 7, 13 }, { 7, 14 }, { 7, 17 },
            { 7, 18 }, { 7, 22 }, { 7, 23 }, { 7, 28 }, { 7, 29 }, { 7, 30 }, { 7, 31 }, { 7, 34 },
            { 7, 35 }, { 7, 36 }, { 7, 39 }, { 7, 40 }, { 7, 43 }, { 7, 49 }, { 7, 50 }, { 8, 9 },
            { 8, 10 }, { 8, 12 }, { 8, 13 }, { 8, 15 }, { 8, 17 }, { 8, 19 }, { 8, 22 }, { 8, 24 },
            { 8, 28 }, { 8, 29 }, { 8, 30 }, { 8, 32 }, { 8, 34 }, { 8, 35 }, { 8, 37 }, { 8, 39 },
            { 8, 41 }, { 8, 44 }, { 8, 49 }, { 8, 51 }, { 9, 11 }, { 9, 12 }, { 9, 14 }, { 9, 15 },
            { 9, 18 }, { 9, 19 }, { 9, 23 }, { 9, 24 }, { 9, 28 }, { 9, 29 }, { 9, 30 }, { 9, 33 },
            { 9, 34 }, { 9, 35 }, { 9, 38 }, { 9, 39 }, { 9, 42 }, { 9, 45 }, { 9, 50 }, { 9, 51 },
            { 10, 11 }, { 10, 12 }, { 10, 13 }, { 10, 16 }, { 10, 17 }, { 10, 20 }, { 10, 22 },
            { 10, 25 }, { 10, 28 }, { 10, 29 }, { 10, 31 }, { 10, 32 }, { 10, 34 }, { 10, 36 },
            { 10, 37 }, { 10, 40 }, { 10, 41 }, { 10, 46 }, { 10, 49 }, { 10, 52 }, { 11, 12 },
            { 11, 14 }, { 11, 16 }, { 11, 18 }, { 11, 20 }, { 11, 23 }, { 11, 25 }, { 11, 28 },
            { 11, 29 }, { 11, 31 }, { 11, 33 }, { 11, 34 }, { 11, 36 }, { 11, 38 }, { 11, 40 },
            { 11, 42 }, { 11, 47 }, { 11, 50 }, { 11, 52 }, { 12, 15 }, { 12, 16 }, { 12, 19 },
            { 12, 20 }, { 12, 24 }, { 12, 25 }, { 12, 28 }, { 12, 29 }, { 12, 32 }, { 12, 33 },
            { 12, 34 }, { 12, 37 }, { 12, 38 }, { 12, 41 }, { 12, 42 }, { 12, 48 }, { 12, 51 },
            { 12, 52 }, { 13, 14 }, { 13, 15 }, { 13, 16 }, { 13, 17 }, { 13, 21 }, { 13, 22 },
            { 13, 26 }, { 13, 28 }, { 13, 30 }, { 13, 31 }, { 13, 32 }, { 13, 35 }, { 13, 36 },
            { 13, 37 }, { 13, 43 }, { 13, 44 }, { 13, 46 }, { 13, 49 }, { 13, 53 }, { 14, 15 },
            { 14, 16 }, { 14, 18 }, { 14, 21 }, { 14, 23 }, { 14, 26 }, { 14, 28 }, { 14, 30 },
            { 14, 31 }, { 14, 33 }, { 14, 35 }, { 14, 36 }, { 14, 38 }, { 14, 43 }, { 14, 45 },
            { 14, 47 }, { 14, 50 }, { 14, 53 }, { 15, 16 }, { 15, 19 }, { 15, 21 }, { 15, 24 },
            { 15, 26 }, { 15, 28 }, { 15, 30 }, { 15, 32 }, { 15, 33 }, { 15, 35 }, { 15, 37 },
            { 15, 38 }, { 15, 44 }, { 15, 45 }, { 15, 48 }, { 15, 51 }, { 15, 53 }, { 16, 20 },
            { 16, 21 }, { 16, 25 }, { 16, 26 }, { 16, 28 }, { 16, 31 }, { 16, 32 }, { 16, 33 },
            { 16, 36 }, { 16, 37 }, { 16, 38 }, { 16, 46 }, { 16, 47 }, { 16, 48 }, { 16, 52 },
            { 16, 53 }, { 17, 18 }, { 17, 19 }, { 17, 20 }, { 17, 21 }, { 17, 22 }, { 17, 27 },
            { 17, 29 }, { 17, 30 }, { 17, 31 }, { 17, 32 }, { 17, 39 }, { 17, 40 }, { 17, 41 },
            { 17, 43 }, { 17, 44 }, { 17, 46 }, { 17, 49 }, { 17, 54 }, { 18, 19 }, { 18, 20 },
            { 18, 21 }, { 18, 23 }, { 18, 27 }, { 18, 29 }, { 18, 30 }, { 18, 31 }, { 18, 33 },
            { 18, 39 }, { 18, 40 }, { 18, 42 }, { 18, 43 }, { 18, 45 }, { 18, 47 }, { 18, 50 },
            { 18, 54 }, { 19, 20 }, { 19, 21 }, { 19, 24 }, { 19, 27 }, { 19, 29 }, { 19, 30 },
            { 19, 32 }, { 19, 33 }, { 19, 39 }, { 19, 41 }, { 19, 42 }, { 19, 44 }, { 19, 45 },
            { 19, 48 }, { 19, 51 }, { 19, 54 }, { 20, 21 }, { 20, 25 }, { 20, 27 }, { 20, 29 },
            { 20, 31 }, { 20, 32 }, { 20, 33 }, { 20, 40 }, { 20, 41 }, { 20, 42 }, { 20, 46 },
            { 20, 47 }, { 20, 48 }, { 20, 52 }, { 20, 54 }, { 21, 26 }, { 21, 27 }, { 21, 30 },
            { 21, 31 }, { 21, 32 }, { 21, 33 }, { 21, 43 }, { 21, 44 }, { 21, 45 }, { 21, 46 },
            { 21, 47 }, { 21, 48 }, { 21, 53 }, { 21, 54 }, { 22, 23 }, { 22, 24 }, { 22, 25 },
            { 22, 26 }, { 22, 27 }, { 22, 34 }, { 22, 35 }, { 22, 36 }, { 22, 37 }, { 22, 39 },
            { 22, 40 }, { 22, 41 }, { 22, 43 }, { 22, 44 }, { 22, 46 }, { 22, 49 }, { 22, 55 },
            { 23, 24 }, { 23, 25 }, { 23, 26 }, { 23, 27 }, { 23, 34 }, { 23, 35 }, { 23, 36 },
            { 23, 38 }, { 23, 39 }, { 23, 40 }, { 23, 42 }, { 23, 43 }, { 23, 45 }, { 23, 47 },
            { 23, 50 }, { 23, 55 }, { 24, 25 }, { 24, 26 }, { 24, 27 }, { 24, 34 }, { 24, 35 },
            { 24, 37 }, { 24, 38 }, { 24, 39 }, { 24, 41 }, { 24, 42 }, { 24, 44 }, { 24, 45 },
            { 24, 48 }, { 24, 51 }, { 24, 55 }, { 25, 26 }, { 25, 27 }, { 25, 34 }, { 25, 36 },
            { 25, 37 }, { 25, 38 }, { 25, 40 }, { 25, 41 }, { 25, 42 }, { 25, 46 }, { 25, 47 },
            { 25, 48 }, { 25, 52 }, { 25, 55 }, { 26, 27 }, { 26, 35 }, { 26, 36 }, { 26, 37 },
            { 26, 38 }, { 26, 43 }, { 26, 44 }, { 26, 45 }, { 26, 46 }, { 26, 47 }, { 26, 48 },
            { 26, 53 }, { 26, 55 }, { 27, 39 }, { 27, 40 }, { 27, 41 }, { 27, 42 }, { 27, 43 },
            { 27, 44 }, { 27, 45 }, { 27, 46 }, { 27, 47 }, { 27, 48 }, { 27, 54 }, { 27, 55 },
            { 28, 29 }, { 28, 30 }, { 28, 31 }, { 28, 32 }, { 28, 33 }, { 28, 34 }, { 28, 35 },
            { 28, 36 }, { 28, 37 }, { 28, 38 }, { 28, 49 }, { 28, 50 }, { 28, 51 }, { 28, 52 },
            { 28, 53 }, { 29, 30 }, { 29, 31 }, { 29, 32 }, { 29, 33 }, { 29, 34 }, { 29, 39 },
            { 29, 40 }, { 29, 41 }, { 29, 42 }, { 29, 49 }, { 29, 50 }, { 29, 51 }, { 29, 52 },
            { 29, 54 }, { 30, 31 }, { 30, 32 }, { 30, 33 }, { 30, 35 }, { 30, 39 }, { 30, 43 },
            { 30, 44 }, { 30, 45 }, { 30, 49 }, { 30, 50 }, { 30, 51 }, { 30, 53 }, { 30, 54 },
            { 31, 32 }, { 31, 33 }, { 31, 36 }, { 31, 40 }, { 31, 43 }, { 31, 46 }, { 31, 47 },
            { 31, 49 }, { 31, 50 }, { 31, 52 }, { 31, 53 }, { 31, 54 }, { 32, 33 }, { 32, 37 },
            { 32, 41 }, { 32, 44 }, { 32, 46 }, { 32, 48 }, { 32, 49 }, { 32, 51 }, { 32, 52 },
            { 32, 53 }, { 32, 54 }, { 33, 38 }, { 33, 42 }, { 33, 45 }, { 33, 47 }, { 33, 48 },
            { 33, 50 }, { 33, 51 }, { 33, 52 }, { 33, 53 }, { 33, 54 }, { 34, 35 }, { 34, 36 },
            { 34, 37 }, { 34, 38 }, { 34, 39 }, { 34, 40 }, { 34, 41 }, { 34, 42 }, { 34, 49 },
            { 34, 50 }, { 34, 51 }, { 34, 52 }, { 34, 55 }, { 35, 36 }, { 35, 37 }, { 35, 38 },
            { 35, 39 }, { 35, 43 }, { 35, 44 }, { 35, 45 }, { 35, 49 }, { 35, 50 }, { 35, 51 },
            { 35, 53 }, { 35, 55 }, { 36, 37 }, { 36, 38 }, { 36, 40 }, { 36, 43 }, { 36, 46 },
            { 36, 47 }, { 36, 49 }, { 36, 50 }, { 36, 52 }, { 36, 53 }, { 36, 55 }, { 37, 38 },
            { 37, 41 }, { 37, 44 }, { 37, 46 }, { 37, 48 }, { 37, 49 }, { 37, 51 }, { 37, 52 },
            { 37, 53 }, { 37, 55 }, { 38, 42 }, { 38, 45 }, { 38, 47 }, { 38, 48 }, { 38, 50 },
            { 38, 51 }, { 38, 52 }, { 38, 53 }, { 38, 55 }, { 39, 40 }, { 39, 41 }, { 39, 42 },
            { 39, 43 }, { 39, 44 }, { 39, 45 }, { 39, 49 }, { 39, 50 }, { 39, 51 }, { 39, 54 },
            { 39, 55 }, { 40, 41 }, { 40, 42 }, { 40, 43 }, { 40, 46 }, { 40, 47 }, { 40, 49 },
            { 40, 50 }, { 40, 52 }, { 40, 54 }, { 40, 55 }, { 41, 42 }, { 41, 44 }, { 41, 46 },
            { 41, 48 }, { 41, 49 }, { 41, 51 }, { 41, 52 }, { 41, 54 }, { 41, 55 }, { 42, 45 },
            { 42, 47 }, { 42, 48 }, { 42, 50 }, { 42, 51 }, { 42, 52 }, { 42, 54 }, { 42, 55 },
            { 43, 44 }, { 43, 45 }, { 43, 46 }, { 43, 47 }, { 43, 49 }, { 43, 50 }, { 43, 53 },
            { 43, 54 }, { 43, 55 }, { 44, 45 }, { 44, 46 }, { 44, 48 }, { 44, 49 }, { 44, 51 },
            { 44, 53 }, { 44, 54 }, { 44, 55 }, { 45, 47 }, { 45, 48 }, { 45, 50 }, { 45, 51 },
            { 45, 53 }, { 45, 54 }, { 45, 55 }, { 46, 47 }, { 46, 48 }, { 46, 49 }, { 46, 52 },
            { 46, 53 }, { 46, 54 }, { 46, 55 }, { 47, 48 }, { 47, 50 }, { 47, 52 }, { 47, 53 },
            { 47, 54 }, { 47, 55 }, { 48, 51 }, { 48, 52 }, { 48, 53 }, { 48, 54 }, { 48, 55 },
            { 49, 50 }, { 49, 51 }, { 49, 52 }, { 49, 53 }, { 49, 54 }, { 49, 55 }, { 50, 51 },
            { 50, 52 }, { 50, 53 }, { 50, 54 }, { 50, 55 }, { 51, 52 }, { 51, 53 }, { 51, 54 },
            { 51, 55 }, { 52, 53 }, { 52, 54 }, { 52, 55 }, { 53, 54 }, { 53, 55 }, { 54, 55 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Chvatal Graph-----------//
    /**
     * @see #generateChvatalGraph
     * @return Chvatal Graph
     */
    public static Graph chvatalGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateChvatalGraph(g);
        return g;
    }

    /**
     * Generates the Chvatal Graph. The
     * Chvátal graph is an undirected graph with 12 vertices and 24 edges, discovered by Václav
     * Chvátal (1970)
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateChvatalGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 4 }, { 0, 6 }, { 0, 9 }, { 1, 2 }, { 1, 5 }, { 1, 7 },
            { 2, 3 }, { 2, 6 }, { 2, 8 }, { 3, 4 }, { 3, 7 }, { 3, 9 }, { 4, 5 }, { 4, 8 },
            { 5, 10 }, { 5, 11 }, { 6, 10 }, { 6, 11 }, { 7, 8 }, { 7, 11 }, { 8, 10 }, { 9, 10 },
            { 9, 11 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Kittell Graph-----------//
    /**
     * @see #generateKittellGraph
     * @return Kittell Graph
     */
    public static Graph kittellGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateKittellGraph(g);
        return g;
    }

    /**
     * Generates the Kittell Graph. The
     * Kittell graph is a planar graph on 23 nodes and 63 edges that tangles the Kempe chains in
     * Kempe's algorithm and thus provides an example of how Kempe's supposed proof of the
     * four-color theorem fails.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateKittellGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 2 }, { 0, 4 }, { 0, 5 }, { 0, 6 }, { 0, 7 }, { 1, 2 },
            { 1, 7 }, { 1, 10 }, { 1, 11 }, { 1, 13 }, { 2, 4 }, { 2, 11 }, { 2, 14 }, { 3, 4 },
            { 3, 5 }, { 3, 12 }, { 3, 14 }, { 3, 16 }, { 4, 5 }, { 4, 14 }, { 5, 6 }, { 5, 16 },
            { 6, 7 }, { 6, 15 }, { 6, 16 }, { 6, 17 }, { 6, 18 }, { 7, 8 }, { 7, 13 }, { 7, 18 },
            { 8, 9 }, { 8, 13 }, { 8, 18 }, { 8, 19 }, { 9, 10 }, { 9, 13 }, { 9, 19 }, { 9, 20 },
            { 10, 11 }, { 10, 13 }, { 10, 20 }, { 10, 21 }, { 11, 12 }, { 11, 14 }, { 11, 15 },
            { 11, 21 }, { 12, 14 }, { 12, 15 }, { 12, 16 }, { 15, 16 }, { 15, 17 }, { 15, 21 },
            { 15, 22 }, { 17, 18 }, { 17, 19 }, { 17, 22 }, { 18, 19 }, { 19, 20 }, { 19, 22 },
            { 20, 21 }, { 20, 22 }, { 21, 22 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Coxeter Graph-----------//
    /**
     * @see #generateCoxeterGraph
     * @return Coxeter Graph
     */
    public static Graph coxeterGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateCoxeterGraph(g);
        return g;
    }

    /**
     * Generates the Coxeter Graph. The
     * Coxeter graph is a nonhamiltonian cubic symmetric graph on 28 vertices and 42 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateCoxeterGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 23 }, { 0, 24 }, { 1, 2 }, { 1, 12 }, { 2, 3 }, { 2, 25 },
            { 3, 4 }, { 3, 21 }, { 4, 5 }, { 4, 17 }, { 5, 6 }, { 5, 11 }, { 6, 7 }, { 6, 27 },
            { 7, 8 }, { 7, 24 }, { 8, 9 }, { 8, 25 }, { 9, 10 }, { 9, 20 }, { 10, 11 }, { 10, 26 },
            { 11, 12 }, { 12, 13 }, { 13, 14 }, { 13, 19 }, { 14, 15 }, { 14, 27 }, { 15, 16 },
            { 15, 25 }, { 16, 17 }, { 16, 26 }, { 17, 18 }, { 18, 19 }, { 18, 24 }, { 19, 20 },
            { 20, 21 }, { 21, 22 }, { 22, 23 }, { 22, 27 }, { 23, 26 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Diamond Graph-----------//
    /**
     * @see #generateDiamondGraph
     * @return Diamond Graph
     */
    public static Graph diamondGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateDiamondGraph(g);
        return g;
    }

    /**
     * Generates the Diamond Graph. The
     * Diamond graph has 4 vertices and 5 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateDiamondGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 2 }, { 2, 3 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Ellingham-Horton 54 Graph-----------//
    /**
     * @see #generateEllinghamHorton54Graph
     * @return Ellingham-Horton 54 Graph
     */
    public static Graph ellinghamHorton54Graph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateEllinghamHorton54Graph(g);
        return g;
    }

    /**
     * Generates the
     * Ellingham-Horton 54
     * Graph. The Ellingham–Horton graph is a 3-regular bicubic graph of 54 vertices
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateEllinghamHorton54Graph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 11 }, { 0, 15 }, { 1, 2 }, { 1, 47 }, { 2, 3 }, { 2, 13 },
            { 3, 4 }, { 3, 8 }, { 4, 5 }, { 4, 15 }, { 5, 6 }, { 5, 10 }, { 6, 7 }, { 6, 30 },
            { 7, 8 }, { 7, 12 }, { 8, 9 }, { 9, 10 }, { 9, 29 }, { 10, 11 }, { 11, 12 }, { 12, 13 },
            { 13, 14 }, { 14, 15 }, { 14, 48 }, { 16, 17 }, { 16, 21 }, { 16, 28 }, { 17, 24 },
            { 17, 29 }, { 18, 19 }, { 18, 23 }, { 18, 30 }, { 19, 20 }, { 19, 31 }, { 20, 21 },
            { 20, 32 }, { 21, 33 }, { 22, 23 }, { 22, 27 }, { 22, 28 }, { 23, 29 }, { 24, 25 },
            { 24, 30 }, { 25, 26 }, { 25, 31 }, { 26, 27 }, { 26, 32 }, { 27, 33 }, { 28, 31 },
            { 32, 52 }, { 33, 53 }, { 34, 35 }, { 34, 39 }, { 34, 46 }, { 35, 42 }, { 35, 47 },
            { 36, 37 }, { 36, 41 }, { 36, 48 }, { 37, 38 }, { 37, 49 }, { 38, 39 }, { 38, 50 },
            { 39, 51 }, { 40, 41 }, { 40, 45 }, { 40, 46 }, { 41, 47 }, { 42, 43 }, { 42, 48 },
            { 43, 44 }, { 43, 49 }, { 44, 45 }, { 44, 50 }, { 45, 51 }, { 46, 49 }, { 50, 52 },
            { 51, 53 }, { 52, 53 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Ellingham-Horton 78 Graph-----------//
    /**
     * @see #generateEllinghamHorton78Graph
     * @return Ellingham-Horton 78 Graph
     */
    public static Graph ellinghamHorton78Graph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateEllinghamHorton78Graph(g);
        return g;
    }

    /**
     * Generates the
     * Ellingham-Horton 78
     * Graph. The Ellingham–Horton graph is a 3-regular graph of 78 vertices
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateEllinghamHorton78Graph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 5 }, { 0, 60 }, { 1, 2 }, { 1, 12 }, { 2, 3 }, { 2, 7 },
            { 3, 4 }, { 3, 14 }, { 4, 5 }, { 4, 9 }, { 5, 6 }, { 6, 7 }, { 6, 11 }, { 7, 15 },
            { 8, 9 }, { 8, 13 }, { 8, 22 }, { 9, 10 }, { 10, 11 }, { 10, 72 }, { 11, 12 },
            { 12, 13 }, { 13, 14 }, { 14, 72 }, { 15, 16 }, { 15, 20 }, { 16, 17 }, { 16, 27 },
            { 17, 18 }, { 17, 22 }, { 18, 19 }, { 18, 29 }, { 19, 20 }, { 19, 24 }, { 20, 21 },
            { 21, 22 }, { 21, 26 }, { 23, 24 }, { 23, 28 }, { 23, 72 }, { 24, 25 }, { 25, 26 },
            { 25, 71 }, { 26, 27 }, { 27, 28 }, { 28, 29 }, { 29, 69 }, { 30, 31 }, { 30, 35 },
            { 30, 52 }, { 31, 32 }, { 31, 42 }, { 32, 33 }, { 32, 37 }, { 33, 34 }, { 33, 43 },
            { 34, 35 }, { 34, 39 }, { 35, 36 }, { 36, 41 }, { 36, 63 }, { 37, 65 }, { 37, 66 },
            { 38, 39 }, { 38, 59 }, { 38, 74 }, { 39, 40 }, { 40, 41 }, { 40, 44 }, { 41, 42 },
            { 42, 74 }, { 43, 44 }, { 43, 74 }, { 44, 45 }, { 45, 46 }, { 45, 50 }, { 46, 47 },
            { 46, 57 }, { 47, 48 }, { 47, 52 }, { 48, 49 }, { 48, 75 }, { 49, 50 }, { 49, 54 },
            { 50, 51 }, { 51, 52 }, { 51, 56 }, { 53, 54 }, { 53, 58 }, { 53, 73 }, { 54, 55 },
            { 55, 56 }, { 55, 59 }, { 56, 57 }, { 57, 58 }, { 58, 75 }, { 59, 75 }, { 60, 61 },
            { 60, 64 }, { 61, 62 }, { 61, 71 }, { 62, 63 }, { 62, 77 }, { 63, 67 }, { 64, 65 },
            { 64, 69 }, { 65, 77 }, { 66, 70 }, { 66, 73 }, { 67, 68 }, { 67, 73 }, { 68, 69 },
            { 68, 76 }, { 70, 71 }, { 70, 76 }, { 76, 77 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Errera Graph-----------//
    /**
     * @see #generateErreraGraph
     * @return Errera Graph
     */
    public static Graph erreraGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateErreraGraph(g);
        return g;
    }

    /**
     * Generates the Errera Graph. The
     * Errera graph is the 17-node planar graph
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateErreraGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 7 }, { 0, 14 }, { 0, 15 }, { 0, 16 }, { 1, 2 }, { 1, 9 },
            { 1, 14 }, { 1, 15 }, { 2, 3 }, { 2, 8 }, { 2, 9 }, { 2, 10 }, { 2, 14 }, { 3, 4 },
            { 3, 9 }, { 3, 10 }, { 3, 11 }, { 4, 5 }, { 4, 10 }, { 4, 11 }, { 4, 12 }, { 5, 6 },
            { 5, 11 }, { 5, 12 }, { 5, 13 }, { 6, 7 }, { 6, 8 }, { 6, 12 }, { 6, 13 }, { 6, 16 },
            { 7, 13 }, { 7, 15 }, { 7, 16 }, { 8, 10 }, { 8, 12 }, { 8, 14 }, { 8, 16 }, { 9, 11 },
            { 9, 13 }, { 9, 15 }, { 10, 12 }, { 11, 13 }, { 13, 15 }, { 14, 16 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Folkman Graph-----------//
    /**
     * @see #generateFolkmanGraph
     * @return Folkman Graph
     */
    public static Graph folkmanGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateFolkmanGraph(g);
        return g;
    }

    /**
     * Generates the Folkman Graph. The
     * Folkman graph is the 20-vertex 4-regular graph.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateFolkmanGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 3 }, { 0, 13 }, { 0, 15 }, { 1, 2 }, { 1, 6 }, { 1, 8 },
            { 2, 3 }, { 2, 17 }, { 2, 19 }, { 3, 6 }, { 3, 8 }, { 4, 5 }, { 4, 7 }, { 4, 17 },
            { 4, 19 }, { 5, 6 }, { 5, 10 }, { 5, 12 }, { 6, 7 }, { 7, 10 }, { 7, 12 }, { 8, 9 },
            { 8, 11 }, { 9, 10 }, { 9, 14 }, { 9, 16 }, { 10, 11 }, { 11, 14 }, { 11, 16 },
            { 12, 13 }, { 12, 15 }, { 13, 14 }, { 13, 18 }, { 14, 15 }, { 15, 18 }, { 16, 17 },
            { 16, 19 }, { 17, 18 }, { 18, 19 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Franklin Graph-----------//
    /**
     * @see #generateFranklinGraph
     * @return Franklin Graph
     */
    public static Graph franklinGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateFranklinGraph(g);
        return g;
    }

    /**
     * Generates the Franklin Graph.
     * The Franklin graph is the 12-vertex cubic graph.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateFranklinGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 5 }, { 0, 6 }, { 1, 2 }, { 1, 7 }, { 2, 3 }, { 2, 8 },
            { 3, 4 }, { 3, 9 }, { 4, 5 }, { 4, 10 }, { 5, 11 }, { 6, 7 }, { 6, 9 }, { 7, 10 },
            { 8, 9 }, { 8, 11 }, { 10, 11 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Frucht Graph-----------//
    /**
     * @see #generateFruchtGraph
     * @return Frucht Graph
     */
    public static Graph fruchtGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateFruchtGraph(g);
        return g;
    }

    /**
     * Generates the Frucht Graph. The
     * Frucht graph is smallest cubic identity graph.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateFruchtGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 6 }, { 0, 7 }, { 1, 2 }, { 1, 7 }, { 2, 3 }, { 2, 8 },
            { 3, 4 }, { 3, 9 }, { 4, 5 }, { 4, 9 }, { 5, 6 }, { 5, 10 }, { 6, 10 }, { 7, 11 },
            { 8, 9 }, { 8, 11 }, { 10, 11 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Goldner-Harary Graph-----------//
    /**
     * @see #generateGoldnerHararyGraph
     * @return Goldner-Harary Graph
     */
    public static Graph goldnerHararyGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateGoldnerHararyGraph(g);
        return g;
    }

    /**
     * Generates the Goldner-Harary
     * Graph. The Goldner-Harary graph is a graph on 11 vertices and 27. It is a simplicial
     * graph, meaning that it is polyhedral and consists of only triangular faces.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateGoldnerHararyGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 3 }, { 0, 4 }, { 1, 2 }, { 1, 3 }, { 1, 4 }, { 1, 5 },
            { 1, 6 }, { 1, 7 }, { 1, 10 }, { 2, 3 }, { 2, 7 }, { 3, 4 }, { 3, 7 }, { 3, 8 },
            { 3, 9 }, { 3, 10 }, { 4, 5 }, { 4, 9 }, { 4, 10 }, { 5, 10 }, { 6, 7 }, { 6, 10 },
            { 7, 8 }, { 7, 10 }, { 8, 10 }, { 9, 10 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Heawood Graph-----------//
    /**
     * @see #generateHeawoodGraph
     * @return Heawood Graph
     */
    public static Graph heawoodGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateHeawoodGraph(g);
        return g;
    }

    /**
     * Generates the Heawood Graph.
     * Heawood graph is an undirected graph with 14 vertices and 21 edges, named after Percy John
     * Heawood.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateHeawoodGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 5 }, { 0, 13 }, { 1, 2 }, { 1, 10 }, { 2, 3 }, { 2, 7 },
            { 3, 4 }, { 3, 12 }, { 4, 5 }, { 4, 9 }, { 5, 6 }, { 6, 7 }, { 6, 11 }, { 7, 8 },
            { 8, 9 }, { 8, 13 }, { 9, 10 }, { 10, 11 }, { 11, 12 }, { 12, 13 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Herschel Graph-----------//
    /**
     * @see #generateHerschelGraph
     * @return Herschel Graph
     */
    public static Graph herschelGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateHerschelGraph(g);
        return g;
    }

    /**
     * Generates the Herschel Graph.
     * The Herschel graph is the smallest nonhamiltonian polyhedral graph (Coxeter 1973, p. 8). It
     * is the unique such graph on 11 nodes and 18 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateHerschelGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 3 }, { 0, 4 }, { 1, 2 }, { 1, 5 }, { 1, 6 }, { 2, 3 },
            { 2, 7 }, { 3, 8 }, { 3, 9 }, { 4, 5 }, { 4, 9 }, { 5, 10 }, { 6, 7 }, { 6, 10 },
            { 7, 8 }, { 8, 10 }, { 9, 10 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Hoffman Graph-----------//
    /**
     * @see #generateHoffmanGraph
     * @return Hoffman Graph
     */
    public static Graph hoffmanGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateHoffmanGraph(g);
        return g;
    }

    /**
     * Generates the Hoffman Graph. The
     * Hoffman graph is the bipartite graph on 16 nodes and 32 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateHoffmanGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 7 }, { 0, 8 }, { 0, 13 }, { 1, 2 }, { 1, 9 }, { 1, 14 },
            { 2, 3 }, { 2, 8 }, { 2, 10 }, { 3, 4 }, { 3, 9 }, { 3, 15 }, { 4, 5 }, { 4, 10 },
            { 4, 11 }, { 5, 6 }, { 5, 12 }, { 5, 14 }, { 6, 7 }, { 6, 11 }, { 6, 13 }, { 7, 12 },
            { 7, 15 }, { 8, 12 }, { 8, 14 }, { 9, 11 }, { 9, 13 }, { 10, 12 }, { 10, 15 },
            { 11, 14 }, { 13, 15 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Krackhardt kite Graph-----------//
    /**
     * @see #generateKrackhardtKiteGraph
     * @return Krackhardt kite Graph
     */
    public static Graph krackhardtKiteGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateKrackhardtKiteGraph(g);
        return g;
    }

    /**
     * Generates the Krackhardt kite
     * Graph. The Krackhardt kite is the simple graph on 10 nodes and 18 edges. It arises in
     * social network theory.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateKrackhardtKiteGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 0, 5 }, { 1, 3 }, { 1, 4 }, { 1, 6 },
            { 2, 3 }, { 2, 5 }, { 3, 4 }, { 3, 5 }, { 3, 6 }, { 4, 6 }, { 5, 6 }, { 5, 7 },
            { 6, 7 }, { 7, 8 }, { 8, 9 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Klein 3-regular Graph-----------//
    /**
     * @see #generateKlein3RegularGraph
     * @return Klein 3-regular Graph
     */
    public static Graph klein3RegularGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateKlein3RegularGraph(g);
        return g;
    }

    /**
     * Generates the Klein 3-regular Graph.
     * This graph is a 3-regular graph with 56 vertices and 84 edges, named after Felix Klein.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateKlein3RegularGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 3 }, { 0, 53 }, { 0, 55 }, { 1, 4 }, { 1, 30 }, { 1, 42 }, { 2, 6 },
            { 2, 44 }, { 2, 55 }, { 3, 7 }, { 3, 10 }, { 4, 15 }, { 4, 22 }, { 5, 8 }, { 5, 13 },
            { 5, 50 }, { 6, 9 }, { 6, 14 }, { 7, 12 }, { 7, 18 }, { 8, 9 }, { 8, 33 }, { 9, 12 },
            { 10, 17 }, { 10, 29 }, { 11, 16 }, { 11, 25 }, { 11, 53 }, { 12, 19 }, { 13, 18 },
            { 13, 54 }, { 14, 21 }, { 14, 37 }, { 15, 16 }, { 15, 17 }, { 16, 23 }, { 17, 20 },
            { 18, 40 }, { 19, 20 }, { 19, 24 }, { 20, 27 }, { 21, 22 }, { 21, 24 }, { 22, 26 },
            { 23, 28 }, { 23, 47 }, { 24, 31 }, { 25, 26 }, { 25, 44 }, { 26, 32 }, { 27, 28 },
            { 27, 35 }, { 28, 33 }, { 29, 30 }, { 29, 46 }, { 30, 54 }, { 31, 34 }, { 31, 36 },
            { 32, 34 }, { 32, 51 }, { 33, 39 }, { 34, 40 }, { 35, 36 }, { 35, 38 }, { 36, 43 },
            { 37, 42 }, { 37, 48 }, { 38, 41 }, { 38, 46 }, { 39, 41 }, { 39, 44 }, { 40, 49 },
            { 41, 51 }, { 42, 50 }, { 43, 45 }, { 43, 48 }, { 45, 47 }, { 45, 49 }, { 46, 52 },
            { 47, 50 }, { 48, 52 }, { 49, 53 }, { 51, 54 }, { 52, 55 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Klein 7-regular Graph-----------//
    /**
     * @see #generateKlein7RegularGraph
     * @return Klein 7-regular Graph
     */
    public static Graph klein7RegularGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateKlein7RegularGraph(g);
        return g;
    }

    /**
     * Generates the Klein 7-regular Graph.
     * This graph is a 7-regular graph with 24 vertices and 84 edges, named after Felix Klein.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateKlein7RegularGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int arr[] = { 0, 1, 2, 3, 4, 5, 6 };
        addCycle(targetGraph, arr);
        int[][] edges = { { 0, 2 }, { 0, 6 }, { 0, 10 }, { 0, 11 }, { 0, 12 }, { 0, 18 }, { 1, 3 },
            { 1, 9 }, { 1, 11 }, { 1, 20 }, { 1, 22 }, { 2, 4 }, { 2, 10 }, { 2, 15 }, { 2, 19 },
            { 3, 5 }, { 3, 7 }, { 3, 14 }, { 3, 22 }, { 4, 6 }, { 4, 8 }, { 4, 19 }, { 4, 21 },
            { 5, 7 }, { 5, 11 }, { 5, 17 }, { 5, 23 }, { 6, 8 }, { 6, 11 }, { 6, 16 }, { 6, 18 },
            { 7, 9 }, { 7, 14 }, { 7, 15 }, { 7, 16 }, { 7, 17 }, { 8, 10 }, { 8, 13 }, { 8, 14 },
            { 8, 16 }, { 8, 21 }, { 9, 11 }, { 9, 13 }, { 9, 15 }, { 9, 16 }, { 9, 20 }, { 10, 12 },
            { 10, 13 }, { 10, 14 }, { 10, 15 }, { 11, 13 }, { 11, 23 }, { 12, 14 }, { 12, 17 },
            { 12, 18 }, { 12, 22 }, { 12, 23 }, { 13, 15 }, { 13, 21 }, { 13, 23 }, { 14, 16 },
            { 14, 22 }, { 15, 17 }, { 15, 19 }, { 16, 18 }, { 16, 20 }, { 17, 18 }, { 17, 19 },
            { 17, 23 }, { 18, 19 }, { 18, 20 }, { 19, 20 }, { 19, 21 }, { 20, 21 }, { 20, 22 },
            { 21, 22 }, { 21, 23 }, { 22, 23 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Moser spindle Graph-----------//
    /**
     * @see #generateMoserSpindleGraph
     * @return Moser spindle Graph
     */
    public static Graph moserSpindleGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateMoserSpindleGraph(g);
        return g;
    }

    /**
     * Generates the Moser spindle
     * Graph. The Moser spindle is the 7-node unit-distance graph.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateMoserSpindleGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 4 }, { 0, 5 }, { 0, 6 }, { 1, 2 }, { 1, 5 }, { 2, 3 },
            { 2, 5 }, { 3, 4 }, { 3, 6 }, { 4, 6 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Pappus Graph-----------//
    /**
     * @see #generatePappusGraph
     * @return Pappus Graph
     */
    public static Graph pappusGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generatePappusGraph(g);
        return g;
    }

    /**
     * Generates the Pappus Graph. The
     * Pappus Graph is a bipartite 3-regular undirected graph with 18 vertices and 27 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generatePappusGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 5 }, { 0, 6 }, { 1, 2 }, { 1, 7 }, { 2, 3 }, { 2, 8 },
            { 3, 4 }, { 3, 9 }, { 4, 5 }, { 4, 10 }, { 5, 11 }, { 6, 13 }, { 6, 17 }, { 7, 12 },
            { 7, 14 }, { 8, 13 }, { 8, 15 }, { 9, 14 }, { 9, 16 }, { 10, 15 }, { 10, 17 },
            { 11, 12 }, { 11, 16 }, { 12, 15 }, { 13, 16 }, { 14, 17 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Poussin Graph-----------//
    /**
     * @see #generatePoussinGraph
     * @return Poussin Graph
     */
    public static Graph poussinGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generatePoussinGraph(g);
        return g;
    }

    /**
     * Generates the Poussin Graph. The
     * Poussin graph is the 15-node planar graph.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generatePoussinGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int arr[] = { 0, 1, 2, 3, 4, 5, 6 };
        addCycle(targetGraph, arr);
        int arr1[] = { 9, 10, 11, 12, 13, 14 };
        addCycle(targetGraph, arr1);
        int[][] edges = { { 0, 2 }, { 0, 4 }, { 0, 5 }, { 1, 6 }, { 1, 7 }, { 2, 4 }, { 2, 7 },
            { 2, 8 }, { 3, 5 }, { 3, 8 }, { 3, 9 }, { 3, 13 }, { 5, 9 }, { 5, 10 }, { 6, 7 },
            { 6, 10 }, { 6, 11 }, { 7, 8 }, { 7, 11 }, { 7, 12 }, { 8, 12 }, { 8, 13 }, { 9, 13 },
            { 10, 14 }, { 11, 14 }, { 12, 14 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Schläfli Graph-----------//
    /**
     * @see #generateSchläfliGraph
     * @return Schläfli Graph
     */
    public static Graph schläfliGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateSchläfliGraph(g);
        return g;
    }

    /**
     * Generates the Schläfli Graph.
     * The Schläfli graph is a strongly regular graph on 27 nodes
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateSchläfliGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 11 }, { 0, 12 }, { 0, 13 }, { 0, 14 }, { 0, 15 }, { 0, 16 },
            { 0, 17 }, { 0, 18 }, { 0, 19 }, { 0, 20 }, { 0, 21 }, { 0, 22 }, { 0, 23 }, { 0, 24 },
            { 0, 25 }, { 0, 26 }, { 1, 3 }, { 1, 4 }, { 1, 5 }, { 1, 6 }, { 1, 7 }, { 1, 8 },
            { 1, 9 }, { 1, 10 }, { 1, 19 }, { 1, 20 }, { 1, 21 }, { 1, 22 }, { 1, 23 }, { 1, 24 },
            { 1, 25 }, { 1, 26 }, { 2, 3 }, { 2, 4 }, { 2, 5 }, { 2, 6 }, { 2, 7 }, { 2, 8 },
            { 2, 9 }, { 2, 10 }, { 2, 11 }, { 2, 12 }, { 2, 13 }, { 2, 14 }, { 2, 15 }, { 2, 16 },
            { 2, 17 }, { 2, 18 }, { 3, 5 }, { 3, 6 }, { 3, 7 }, { 3, 8 }, { 3, 9 }, { 3, 10 },
            { 3, 15 }, { 3, 16 }, { 3, 17 }, { 3, 18 }, { 3, 23 }, { 3, 24 }, { 3, 25 }, { 3, 26 },
            { 4, 5 }, { 4, 6 }, { 4, 7 }, { 4, 8 }, { 4, 9 }, { 4, 10 }, { 4, 11 }, { 4, 12 },
            { 4, 13 }, { 4, 14 }, { 4, 19 }, { 4, 20 }, { 4, 21 }, { 4, 22 }, { 5, 7 }, { 5, 8 },
            { 5, 9 }, { 5, 10 }, { 5, 13 }, { 5, 14 }, { 5, 17 }, { 5, 18 }, { 5, 21 }, { 5, 22 },
            { 5, 25 }, { 5, 26 }, { 6, 7 }, { 6, 8 }, { 6, 9 }, { 6, 10 }, { 6, 11 }, { 6, 12 },
            { 6, 15 }, { 6, 16 }, { 6, 19 }, { 6, 20 }, { 6, 23 }, { 6, 24 }, { 7, 9 }, { 7, 10 },
            { 7, 12 }, { 7, 14 }, { 7, 16 }, { 7, 18 }, { 7, 20 }, { 7, 22 }, { 7, 24 }, { 7, 26 },
            { 8, 9 }, { 8, 10 }, { 8, 11 }, { 8, 13 }, { 8, 15 }, { 8, 17 }, { 8, 19 }, { 8, 21 },
            { 8, 23 }, { 8, 25 }, { 9, 12 }, { 9, 13 }, { 9, 15 }, { 9, 18 }, { 9, 19 }, { 9, 22 },
            { 9, 24 }, { 9, 25 }, { 10, 11 }, { 10, 14 }, { 10, 16 }, { 10, 17 }, { 10, 20 },
            { 10, 21 }, { 10, 23 }, { 10, 26 }, { 11, 12 }, { 11, 13 }, { 11, 14 }, { 11, 15 },
            { 11, 16 }, { 11, 17 }, { 11, 19 }, { 11, 20 }, { 11, 21 }, { 11, 23 }, { 12, 13 },
            { 12, 14 }, { 12, 15 }, { 12, 16 }, { 12, 18 }, { 12, 19 }, { 12, 20 }, { 12, 22 },
            { 12, 24 }, { 13, 14 }, { 13, 15 }, { 13, 17 }, { 13, 18 }, { 13, 19 }, { 13, 21 },
            { 13, 22 }, { 13, 25 }, { 14, 16 }, { 14, 17 }, { 14, 18 }, { 14, 20 }, { 14, 21 },
            { 14, 22 }, { 14, 26 }, { 15, 16 }, { 15, 17 }, { 15, 18 }, { 15, 19 }, { 15, 23 },
            { 15, 24 }, { 15, 25 }, { 16, 17 }, { 16, 18 }, { 16, 20 }, { 16, 23 }, { 16, 24 },
            { 16, 26 }, { 17, 18 }, { 17, 21 }, { 17, 23 }, { 17, 25 }, { 17, 26 }, { 18, 22 },
            { 18, 24 }, { 18, 25 }, { 18, 26 }, { 19, 20 }, { 19, 21 }, { 19, 22 }, { 19, 23 },
            { 19, 24 }, { 19, 25 }, { 20, 21 }, { 20, 22 }, { 20, 23 }, { 20, 24 }, { 20, 26 },
            { 21, 22 }, { 21, 23 }, { 21, 25 }, { 21, 26 }, { 22, 24 }, { 22, 25 }, { 22, 26 },
            { 23, 24 }, { 23, 25 }, { 23, 26 }, { 24, 25 }, { 24, 26 }, { 25, 26 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Tietze Graph-----------//
    /**
     * @see #generateTietzeGraph
     * @return Tietze Graph
     */
    public static Graph tietzeGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateTietzeGraph(g);
        return g;
    }

    /**
     * Generates the Tietze Graph. The
     * Tietze Graph is an undirected cubic graph with 12 vertices and 18 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateTietzeGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int arr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
        addCycle(targetGraph, arr);
        int[][] edges = { { 0, 9 }, { 1, 5 }, { 2, 7 }, { 3, 10 }, { 4, 8 }, { 6, 11 }, { 9, 10 },
            { 9, 11 }, { 10, 11 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Thomsen Graph-----------//
    /**
     * @see #generateThomsenGraph
     * @return Thomsen Graph
     */
    public static Graph thomsenGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateThomsenGraph(g);
        return g;
    }

    /**
     * Generates the Thomsen Graph. The
     * Thomsen Graph is complete bipartite graph consisting of 6 vertices (3 vertices in each
     * bipartite partition. It is also called the Utility graph.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateThomsenGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 3 }, { 0, 4 }, { 0, 5 }, { 1, 3 }, { 1, 4 }, { 1, 5 }, { 2, 3 },
            { 2, 4 }, { 2, 5 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // -------------Tutte Graph-----------//
    /**
     * @see #generateTutteGraph
     * @return Tutte Graph
     */
    public static Graph tutteGraph()
    {
        Graph g = GraphTypeBuilder
                .undirected().allowingMultipleEdges(false).allowingSelfLoops(false)
                .vertexSupplier(SupplierUtil.createIntegerSupplier()).edgeClass(DefaultEdge.class)
                .buildGraph();
        new NamedGraphGenerator().generateTutteGraph(g);
        return g;
    }

    /**
     * Generates the Tutte Graph. The Tutte
     * Graph is a 3-regular graph with 46 vertices and 69 edges.
     * 
     * @param targetGraph receives the generated edges and vertices; if this is non-empty on entry,
     *        the result will be a disconnected graph since generated elements will not be connected
     *        to existing elements
     */
    public void generateTutteGraph(Graph targetGraph)
    {
        vertexMap.clear();
        int[][] edges = { { 0, 1 }, { 0, 16 }, { 0, 31 }, { 1, 2 }, { 1, 4 }, { 2, 3 }, { 2, 5 },
            { 3, 4 }, { 3, 7 }, { 4, 9 }, { 5, 6 }, { 5, 10 }, { 6, 7 }, { 6, 11 }, { 7, 8 },
            { 8, 9 }, { 8, 12 }, { 9, 15 }, { 10, 11 }, { 10, 13 }, { 11, 12 }, { 12, 14 },
            { 13, 14 }, { 13, 30 }, { 14, 15 }, { 15, 43 }, { 16, 17 }, { 16, 19 }, { 17, 18 },
            { 17, 20 }, { 18, 19 }, { 18, 22 }, { 19, 24 }, { 20, 21 }, { 20, 25 }, { 21, 22 },
            { 21, 26 }, { 22, 23 }, { 23, 24 }, { 23, 27 }, { 24, 30 }, { 25, 26 }, { 25, 28 },
            { 26, 27 }, { 27, 29 }, { 28, 29 }, { 28, 45 }, { 29, 30 }, { 31, 32 }, { 31, 34 },
            { 32, 33 }, { 32, 35 }, { 33, 34 }, { 33, 37 }, { 34, 39 }, { 35, 36 }, { 35, 40 },
            { 36, 37 }, { 36, 41 }, { 37, 38 }, { 38, 39 }, { 38, 42 }, { 39, 45 }, { 40, 41 },
            { 40, 43 }, { 41, 42 }, { 42, 44 }, { 43, 44 }, { 44, 45 } };
        for (int[] edge : edges)
            addEdge(targetGraph, edge[0], edge[1]);
    }

    // --------------Helper methods-----------------/
    private V addVertex(Graph targetGraph, int i)
    {
        if (!vertexMap.containsKey(i)) {
            vertexMap.put(i, targetGraph.addVertex());
        }
        return vertexMap.get(i);
    }

    private void addEdge(Graph targetGraph, int i, int j)
    {
        V u = addVertex(targetGraph, i);
        V v = addVertex(targetGraph, j);
        targetGraph.addEdge(u, v);
    }

    private void addCycle(Graph targetGraph, int array[])
    {
        for (int i = 0; i < array.length; i++)
            addEdge(targetGraph, array[i], array[(i + 1) % array.length]);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy