All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.salesforce.jgrapht.generate.PlantedPartitionGraphGenerator Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2018-2018, by Emilio Cruciani and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */

package com.salesforce.jgrapht.generate;

import com.salesforce.jgrapht.*;

import java.util.*;

/**
 * Create a random $l$-planted partition graph. An $l$-planted partition graph is a random graph on
 * $n = l \cdot k$ vertices subdivided in $l$ groups with $k$ vertices each. Vertices within the
 * same group are connected by an edge with probability $p$, while vertices belonging to different
 * groups are connected by an edge with probability $q$.
 *
 * 

* The $l$-planted partition model is a special case of the * Stochastic Block Model. If the * probability matrix is a constant, in the sense that $P_{ij}=p$ for all $i,j$, then the result is * the Erdős–Rényi model $\mathcal G(n,p)$. This case is degenerate—the partition into communities * becomes irrelevant— but it illustrates a close relationship to the Erdős–Rényi model. * * For more information on planted graphs, refer to: *

    *
  1. Condon, A. Karp, R.M. Algorithms for graph partitioning on the planted partition model, * Random Structures and Algorithms, Volume 18, Issue 2, p.116-140, 2001
  2. *
  3. Fortunato, S. Community Detection in Graphs, Physical Reports Volume 486, Issue 3-5 p. * 75-174, 2010
  4. *
* * @param the graph vertex type * @param the graph edge type * * @author Emilio Cruciani */ public class PlantedPartitionGraphGenerator implements GraphGenerator { private static final boolean DEFAULT_ALLOW_SELFLOOPS = false; private final int l; private final int k; private final double p; private final double q; private final Random rng; private final boolean selfLoops; private boolean fired; private List> communities; /** * Construct a new PlantedPartitionGraphGenerator. * * @param l number of groups * @param k number of nodes in each group * @param p probability of connecting vertices within a group * @param q probability of connecting vertices between groups * @throws IllegalArgumentException if number of groups is negative * @throws IllegalArgumentException if number of nodes in each group is negative * @throws IllegalArgumentException if p is not in [0,1] * @throws IllegalArgumentException if q is not in [0,1] */ public PlantedPartitionGraphGenerator(int l, int k, double p, double q) { this(l, k, p, q, new Random(), DEFAULT_ALLOW_SELFLOOPS); } /** * Construct a new PlantedPartitionGraphGenerator. * * @param l number of groups * @param k number of nodes in each group * @param p probability of connecting vertices within a group * @param q probability of connecting vertices between groups * @param selfLoops true if the graph allows self loops * @throws IllegalArgumentException if number of groups is negative * @throws IllegalArgumentException if number of nodes in each group is negative * @throws IllegalArgumentException if p is not in [0,1] * @throws IllegalArgumentException if q is not in [0,1] */ public PlantedPartitionGraphGenerator(int l, int k, double p, double q, boolean selfLoops) { this(l, k, p, q, new Random(), selfLoops); } /** * Construct a new PlantedPartitionGraphGenerator. * * @param l number of groups * @param k number of nodes in each group * @param p probability of connecting vertices within a group * @param q probability of connecting vertices between groups * @param seed seed for the random number generator * @throws IllegalArgumentException if number of groups is negative * @throws IllegalArgumentException if number of nodes in each group is negative * @throws IllegalArgumentException if p is not in [0,1] * @throws IllegalArgumentException if q is not in [0,1] */ public PlantedPartitionGraphGenerator(int l, int k, double p, double q, long seed) { this(l, k, p, q, new Random(seed), DEFAULT_ALLOW_SELFLOOPS); } /** * Construct a new PlantedPartitionGraphGenerator. * * @param l number of groups * @param k number of nodes in each group * @param p probability of connecting vertices within a group * @param q probability of connecting vertices between groups * @param seed seed for the random number generator * @param selfLoops true if the graph allows self loops * @throws IllegalArgumentException if number of groups is negative * @throws IllegalArgumentException if number of nodes in each group is negative * @throws IllegalArgumentException if p is not in [0,1] * @throws IllegalArgumentException if q is not in [0,1] */ public PlantedPartitionGraphGenerator( int l, int k, double p, double q, long seed, boolean selfLoops) { this(l, k, p, q, new Random(seed), selfLoops); } /** * Construct a new PlantedPartitionGraphGenerator. * * @param l number of groups * @param k number of nodes in each group * @param p probability of connecting vertices within a group * @param q probability of connecting vertices between groups * @param rng random number generator * @param selfLoops true if the graph allows self loops * @throws IllegalArgumentException if number of groups is negative * @throws IllegalArgumentException if number of nodes in each group is negative * @throws IllegalArgumentException if p is not in [0,1] * @throws IllegalArgumentException if q is not in [0,1] */ public PlantedPartitionGraphGenerator( int l, int k, double p, double q, Random rng, boolean selfLoops) { if (l < 0) { throw new IllegalArgumentException("number of groups must be non-negative"); } if (k < 0) { throw new IllegalArgumentException( "number of nodes in each group must be non-negative"); } if (p < 0 || p > 1) { throw new IllegalArgumentException("invalid probability p"); } if (q < 0 || q > 1) { throw new IllegalArgumentException("invalid probability q"); } this.l = l; this.k = k; this.p = p; this.q = q; this.rng = rng; this.selfLoops = selfLoops; this.fired = false; } /** * Generate an $l$-planted partition graph. * * Note that the method can be called only once. Must instantiate another * PlantedPartitionGraphGenerator object in order to generate another $l$-planted partition * graph. * * @param target target graph * @param resultMap result map * @throws IllegalArgumentException if target is directed * @throws IllegalArgumentException if self loops are requested but target does not allow them * @throws IllegalStateException if generateGraph() is called more than once */ @Override public void generateGraph(Graph target, Map resultMap) { if (fired) { throw new IllegalStateException("generateGraph() can be only called once"); } this.fired = true; // instantiate community structure communities = new ArrayList<>(this.l); for (int i = 0; i < this.l; i++) { communities.add(new LinkedHashSet<>(this.k)); } // empty graph case if (this.l == 0 || this.k == 0) { return; } // number of nodes int n = this.k * this.l; // integer to vertices List vertices = new ArrayList<>(n); for (int i = 0; i < n; i++) { V vertex = target.addVertex(); vertices.add(vertex); // populate community structure int lv = i / this.k; // group of node v communities.get(lv).add(vertex); } // add self loops if (this.selfLoops) { if (target.getType().isAllowingSelfLoops()) { for (V v : vertices) { if (this.rng.nextDouble() < this.p) { target.addEdge(v, v); } } } else { throw new IllegalArgumentException("target graph must allow self-loops"); } } // undirected edges if (target.getType().isUndirected()) { for (int i = 0; i < n; i++) { int li = i / this.k; // group of node i for (int j = i + 1; j < n; j++) { int lj = j / this.k; // group of node j // edge within partition if (li == lj) { if (this.rng.nextDouble() < this.p) { target.addEdge(vertices.get(i), vertices.get(j)); } } // edge between partitions else { if (this.rng.nextDouble() < this.q) { target.addEdge(vertices.get(i), vertices.get(j)); } } } } } // directed edges else { for (int i = 0; i < n; i++) { int li = i / this.k; // group of node i for (int j = i + 1; j < n; j++) { int lj = j / this.k; // group of node j // edge within partition if (li == lj) { if (this.rng.nextDouble() < this.p) { target.addEdge(vertices.get(i), vertices.get(j)); } if (this.rng.nextDouble() < this.p) { target.addEdge(vertices.get(j), vertices.get(i)); } } // edge between partitions else { if (this.rng.nextDouble() < this.q) { target.addEdge(vertices.get(i), vertices.get(j)); } if (this.rng.nextDouble() < this.q) { target.addEdge(vertices.get(j), vertices.get(i)); } } } } } } /** * Get the community structure of the graph. The method returns a list of communities, * represented as sets of nodes. * * @throws IllegalStateException if getCommunities() is called before generating the graph * @return the community structure of the graph */ public List> getCommunities() { if (communities == null) throw new IllegalStateException( "must generate graph before getting community structure"); return communities; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy