com.salesforce.jgrapht.generate.RandomRegularGraphGenerator Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
/*
* (C) Copyright 2018-2018, by Emilio Cruciani and Contributors.
*
* JGraphT : a free Java graph-theory library
*
* See the CONTRIBUTORS.md file distributed with this work for additional
* information regarding copyright ownership.
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0, or the
* GNU Lesser General Public License v2.1 or later
* which is available at
* http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
*
* SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
*/
package com.salesforce.jgrapht.generate;
import com.salesforce.jgrapht.*;
import java.util.*;
/**
* Generate a random $d$-regular undirected graph with $n$ vertices. A regular graph is a graph
* where each vertex has the same degree, i.e. the same number of neighbors.
*
*
* The algorithm for the simple case, proposed in [SW99] and extending the one for the non-simple
* case [W99], runs in expected $\mathcal{O}(nd^2)$ time. It has been proved in [KV03] to sample
* from the space of random d-regular graphs in a way which is asymptotically uniform at random when
* $d = \mathcal{O}(n^{1/3 - \epsilon})$.
*
*
* [KV03] Kim, Jeong Han, and Van H. Vu. "Generating random regular graphs." Proceedings of the
* thirty-fifth annual ACM symposium on Theory of computing. ACM, 2003.
*
* [SW99] Steger, Angelika, and Nicholas C. Wormald. "Generating random regular graphs quickly."
* Combinatorics, Probability and Computing 8.4 (1999): 377-396.
*
* [W99] Wormald, Nicholas C. "Models of random regular graphs." London Mathematical Society Lecture
* Note Series (1999): 239-298.
*
* @author Emilio Cruciani
*
* @param graph node type
* @param graph edge type
*/
public class RandomRegularGraphGenerator
implements
GraphGenerator
{
private final int n;
private final int d;
private final Random rng;
/**
* Construct a new RandomRegularGraphGenerator.
*
* @param n number of nodes
* @param d degree of nodes
* @throws IllegalArgumentException if number of nodes is negative
* @throws IllegalArgumentException if degree is negative
* @throws IllegalArgumentException if degree is greater than number of nodes
* @throws IllegalArgumentException if the value "n * d" is odd
*/
public RandomRegularGraphGenerator(int n, int d)
{
this(n, d, new Random());
}
/**
* Construct a new RandomRegularGraphGenerator.
*
* @param n number of nodes
* @param d degree of nodes
* @param seed seed for the random number generator
* @throws IllegalArgumentException if number of nodes is negative
* @throws IllegalArgumentException if degree is negative
* @throws IllegalArgumentException if degree is greater than number of nodes
* @throws IllegalArgumentException if the value "n * d" is odd
*/
public RandomRegularGraphGenerator(int n, int d, long seed)
{
this(n, d, new Random(seed));
}
/**
* Construct a new RandomRegularGraphGenerator.
*
* @param n number of nodes
* @param d degree of nodes
* @param rng the random number generator to use
* @throws IllegalArgumentException if number of nodes is negative
* @throws IllegalArgumentException if degree is negative
* @throws IllegalArgumentException if degree is greater than number of nodes
* @throws IllegalArgumentException if the value "n * d" is odd
*/
public RandomRegularGraphGenerator(int n, int d, Random rng)
{
if (n < 0) {
throw new IllegalArgumentException("number of nodes must be non-negative");
}
if (d < 0) {
throw new IllegalArgumentException("degree of nodes must be non-negative");
}
if (d > n) {
throw new IllegalArgumentException(
"degree of nodes must be smaller than or equal to number of nodes");
}
if ((n * d) % 2 != 0) {
throw new IllegalArgumentException("value 'n * d' must be even");
}
this.n = n;
this.d = d;
this.rng = rng;
}
/**
* Generate a random regular graph.
*
* @param target the target graph
* @param resultMap the result map
* @throws IllegalArgumentException if target is not an undirected graph
* @throws IllegalArgumentException if "n == d" and the graph is simple
*/
@Override
public void generateGraph(Graph target, Map resultMap)
{
if (!target.getType().isUndirected()) {
throw new IllegalArgumentException("target graph must be undirected");
}
if (target.getType().isSimple()) {
// simple case
if (n == 0 || d == 0) {
// no nodes or zero degree case
new EmptyGraphGenerator(n).generateGraph(target);
} else if (d == n) {
throw new IllegalArgumentException("target graph must be simple if 'n == d'");
} else if (d == n - 1) {
// complete case
new CompleteGraphGenerator(n).generateGraph(target);
} else {
// general case
generateSimpleRegularGraph(target);
}
} else {
// non-simple case
generateNonSimpleRegularGraph(target);
}
}
/*
* Auxiliary method to check if there are remaining suitable edges, in the simple regular graph
* generator.
*/
private boolean suitable(
Set> edges, Map potentialEdges)
{
if (potentialEdges.isEmpty()) {
return true;
}
Integer[] keys = potentialEdges.keySet().toArray(new Integer[0]);
Arrays.sort(keys);
for (int i = 0; i < keys.length; i++) {
int s2 = keys[i];
for (int j = 0; j < i; j++) {
int s1 = keys[j];
Map.Entry e = new AbstractMap.SimpleImmutableEntry<>(s1, s2);
if (!edges.contains(e)) {
return true;
}
}
}
return false;
}
/*
* Generate simple regular graph
*/
private void generateSimpleRegularGraph(Graph target)
{
// integers to vertices
List vertices = new ArrayList<>(n);
for (int i = 0; i < n; i++) {
vertices.add(target.addVertex());
}
// set of final edges to add to target graph
Set> edges = new HashSet<>(n * d);
do {
List stubs = new ArrayList<>(n * d);
for (int i = 0; i < n * d; i++) {
stubs.add(i % n);
}
while (!stubs.isEmpty()) {
Map potentialEdges = new HashMap<>();
Collections.shuffle(stubs, rng);
for (int i = 0; i < stubs.size() - 1; i += 2) {
int s1 = stubs.get(i);
int s2 = stubs.get(i + 1);
// s1 < s2 has to be true
if (s1 > s2) {
int temp = s1;
s1 = s2;
s2 = temp;
}
Map.Entry edge =
new AbstractMap.SimpleImmutableEntry<>(s1, s2);
if (s1 != s2 && !edges.contains(edge)) {
edges.add(edge);
} else {
potentialEdges.put(s1, potentialEdges.getOrDefault(s1, 0) + 1);
potentialEdges.put(s2, potentialEdges.getOrDefault(s2, 0) + 1);
}
}
if (!suitable(edges, potentialEdges)) {
edges.clear();
break;
}
stubs.clear();
for (Map.Entry e : potentialEdges.entrySet()) {
int node = e.getKey();
int potential = e.getValue();
for (int i = 0; i < potential; i++) {
stubs.add(node);
}
}
}
} while (edges.isEmpty());
// add edges to target
for (Map.Entry e : edges) {
target.addEdge(vertices.get(e.getKey()), vertices.get(e.getValue()));
}
}
/*
* Generate non-simple regular graph.
*/
private void generateNonSimpleRegularGraph(Graph target)
{
List vertices = new ArrayList<>(n * d);
for (int i = 0; i < n; i++) {
V vertex = target.addVertex();
for (int j = 0; j < d; j++) {
vertices.add(vertex);
}
}
Collections.shuffle(vertices, rng);
for (int i = 0; i < (n * d) / 2; i++) {
V u = vertices.get(2 * i);
V v = vertices.get(2 * i + 1);
target.addEdge(u, v);
}
}
}