All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jheaps.array.BinaryArrayBulkInsertWeakHeap Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2014-2016, by Dimitrios Michail
 *
 * JHeaps Library
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.jheaps.array;

import java.io.Serializable;
import java.util.Comparator;
import java.util.NoSuchElementException;

import org.jheaps.annotations.ConstantTime;
import org.jheaps.annotations.LinearTime;
import org.jheaps.annotations.LogarithmicTime;

/**
 * An array based binary weak heap using bulk insertion. The heap is sorted
 * according to the {@linkplain Comparable natural ordering} of its keys, or by
 * a {@link Comparator} provided at heap creation time, depending on which
 * constructor is used.
 *
 * 

* The implementation uses an array in order to store the elements and * automatically maintains the size of the array much like a * {@link java.util.Vector} does, providing amortized O(1) time cost for the * {@code insert} and amortized O(log(n)) for the {@code deleteMin} operation. * Operation {@code findMin}, is a worst-case O(1) operation. * *

* Constructing such a heap from an array of elements can be performed using the * method {@link #heapify(Object[])} or {@link #heapify(Object[], Comparator)} * in linear time. * *

* Note that the ordering maintained by a binary heap, like any heap, and * whether or not an explicit comparator is provided, must be consistent * with {@code equals} if this heap is to correctly implement the * {@code Heap} interface. (See {@code Comparable} or {@code Comparator} for a * precise definition of consistent with equals.) This is so because * the {@code Heap} interface is defined in terms of the {@code equals} * operation, but a binary heap performs all key comparisons using its * {@code compareTo} (or {@code compare}) method, so two keys that are deemed * equal by this method are, from the standpoint of the binary heap, equal. The * behavior of a heap is well-defined even if its ordering is * inconsistent with {@code equals}; it just fails to obey the general contract * of the {@code Heap} interface. * *

* Note that this implementation is not synchronized. If * multiple threads access a heap concurrently, and at least one of the threads * modifies the heap structurally, it must be synchronized externally. * (A structural modification is any operation that adds or deletes one or more * elements or changing the key of some element.) This is typically accomplished * by synchronizing on some object that naturally encapsulates the heap. * * @param * the type of keys maintained by this heap * * @author Dimitrios Michail */ public class BinaryArrayBulkInsertWeakHeap extends BinaryArrayWeakHeap implements Serializable { private final static long serialVersionUID = 1; /** * Insertion buffer capacity for integer size since we are using Java arrays * to store elements. */ protected static final int INSERTION_BUFFER_CAPACITY = 32 + 2; /** * The insertion buffer */ protected K[] insertionBuffer; /** * Number of elements in the insertion buffer */ protected int insertionBufferSize; /** * Position of minimum in the insertion buffer */ protected int insertionBufferMinPos; /** * Constructs a new, empty heap, using the natural ordering of its keys. * *

* All keys inserted into the heap must implement the {@link Comparable} * interface. Furthermore, all such keys must be mutually * comparable: {@code k1.compareTo(k2)} must not throw a * {@code ClassCastException} for any keys {@code k1} and {@code k2} in the * heap. If the user attempts to put a key into the heap that violates this * constraint (for example, the user attempts to put a string key into a * heap whose keys are integers), the {@code insert(Object key)} call will * throw a {@code ClassCastException}. * *

* The initial capacity of the heap is * {@link BinaryArrayBulkInsertWeakHeap#DEFAULT_HEAP_CAPACITY} and adjusts * automatically based on the sequence of insertions and deletions. */ public BinaryArrayBulkInsertWeakHeap() { this(null, DEFAULT_HEAP_CAPACITY); } /** * Constructs a new, empty heap, with a provided initial capacity using the * natural ordering of its keys. * *

* All keys inserted into the heap must implement the {@link Comparable} * interface. Furthermore, all such keys must be mutually * comparable: {@code k1.compareTo(k2)} must not throw a * {@code ClassCastException} for any keys {@code k1} and {@code k2} in the * heap. If the user attempts to put a key into the heap that violates this * constraint (for example, the user attempts to put a string key into a * heap whose keys are integers), the {@code insert(Object key)} call will * throw a {@code ClassCastException}. * *

* The initial capacity of the heap is provided by the user and is adjusted * automatically based on the sequence of insertions and deletions. * * @param capacity * the initial heap capacity */ public BinaryArrayBulkInsertWeakHeap(int capacity) { this(null, capacity); } /** * Constructs a new, empty heap, ordered according to the given comparator. * *

* All keys inserted into the heap must be mutually comparable by * the given comparator: {@code comparator.compare(k1, * k2)} must not throw a {@code ClassCastException} for any keys {@code k1} * and {@code k2} in the heap. If the user attempts to put a key into the * heap that violates this constraint, the {@code insert(Object key)} call * will throw a {@code ClassCastException}. * *

* The initial capacity of the heap is * {@link BinaryArrayBulkInsertWeakHeap#DEFAULT_HEAP_CAPACITY} and adjusts * automatically based on the sequence of insertions and deletions. * * @param comparator * the comparator that will be used to order this heap. If * {@code null}, the {@linkplain Comparable natural ordering} of * the keys will be used. */ public BinaryArrayBulkInsertWeakHeap(Comparator comparator) { this(comparator, DEFAULT_HEAP_CAPACITY); } /** * Constructs a new, empty heap, with a provided initial capacity ordered * according to the given comparator. * *

* All keys inserted into the heap must be mutually comparable by * the given comparator: {@code comparator.compare(k1, * k2)} must not throw a {@code ClassCastException} for any keys {@code k1} * and {@code k2} in the heap. If the user attempts to put a key into the * heap that violates this constraint, the {@code insert(Object key)} call * will throw a {@code ClassCastException}. * *

* The initial capacity of the heap is provided by the user and is adjusted * automatically based on the sequence of insertions and deletions. * * @param comparator * the comparator that will be used to order this heap. If * {@code null}, the {@linkplain Comparable natural ordering} of * the keys will be used. * @param capacity * the initial heap capacity */ @SuppressWarnings("unchecked") public BinaryArrayBulkInsertWeakHeap(Comparator comparator, int capacity) { super(comparator, capacity); this.insertionBuffer = (K[]) new Object[INSERTION_BUFFER_CAPACITY]; this.insertionBufferSize = 0; this.insertionBufferMinPos = 0; } /** * {@inheritDoc} */ @Override @ConstantTime public boolean isEmpty() { return size + insertionBufferSize == 0; } /** * {@inheritDoc} */ @Override @ConstantTime public long size() { return size + insertionBufferSize; } /** * {@inheritDoc} */ @Override @ConstantTime public void clear() { size = 0; insertionBufferSize = 0; insertionBufferMinPos = 0; } /** * {@inheritDoc} */ @Override @ConstantTime @SuppressWarnings("unchecked") public K findMin() { if (size + insertionBufferSize == 0) { throw new NoSuchElementException(); } if (insertionBufferSize == 0) { return array[0]; } else if (size == 0) { return insertionBuffer[insertionBufferMinPos]; } else { K insertionBufferMin = insertionBuffer[insertionBufferMinPos]; if (comparator == null) { if (((Comparable) array[0]).compareTo(insertionBufferMin) <= 0) { return array[0]; } else { return insertionBufferMin; } } else { if (comparator.compare(array[0], insertionBufferMin) <= 0) { return array[0]; } else { return insertionBufferMin; } } } } /** * {@inheritDoc} */ @Override @SuppressWarnings("unchecked") @ConstantTime(amortized = true) public void insert(K key) { if (key == null) { throw new NullPointerException("Null keys not permitted"); } // add in buffer insertionBuffer[insertionBufferSize++] = key; if (isBulkInsertionBufferFull()) { if (size + insertionBufferSize > array.length) { // first try to double size if (array.length == 0) { ensureCapacity(1); } else { ensureCapacity(2 * array.length); } // if not enough, set to requested size ensureCapacity(size + insertionBufferSize); } if (comparator == null) { bulkInsert(); } else { bulkInsertWithComparator(); } } else if (insertionBufferSize > 1) { // update minimum K insertionBufferMin = insertionBuffer[insertionBufferMinPos]; if (comparator == null) { if (((Comparable) key).compareTo(insertionBufferMin) < 0) { insertionBufferMinPos = insertionBufferSize - 1; } } else { if (comparator.compare(key, insertionBufferMin) < 0) { insertionBufferMinPos = insertionBufferSize - 1; } } } } /** * {@inheritDoc} */ @Override @SuppressWarnings("unchecked") @LogarithmicTime(amortized = true) public K deleteMin() { if (size + insertionBufferSize == 0) { throw new NoSuchElementException(); } // where is the minimum boolean deleteFromInsertionBuffer = false; if (size == 0) { deleteFromInsertionBuffer = true; } else if (insertionBufferSize > 0) { K arrayMin = array[0]; K insertionBufferMin = insertionBuffer[insertionBufferMinPos]; if (comparator == null) { if (((Comparable) insertionBufferMin).compareTo(arrayMin) < 0) { deleteFromInsertionBuffer = true; } } else { if (comparator.compare(insertionBufferMin, arrayMin) < 0) { deleteFromInsertionBuffer = true; } } } K result; if (deleteFromInsertionBuffer) { result = insertionBuffer[insertionBufferMinPos]; insertionBuffer[insertionBufferMinPos] = insertionBuffer[insertionBufferSize - 1]; insertionBuffer[insertionBufferSize - 1] = null; insertionBufferSize--; insertionBufferMinPos = 0; if (comparator == null) { for (int i = 1; i < insertionBufferSize; i++) { if (((Comparable) insertionBuffer[i]) .compareTo(insertionBuffer[insertionBufferMinPos]) < 0) { insertionBufferMinPos = i; } } } else { for (int i = 1; i < insertionBufferSize; i++) { if (comparator.compare(insertionBuffer[i], insertionBuffer[insertionBufferMinPos]) < 0) { insertionBufferMinPos = i; } } } } else { result = array[0]; size--; array[0] = array[size]; array[size] = null; if (size > 1) { if (comparator == null) { fixdown(0); } else { fixdownWithComparator(0); } } if (minCapacity <= array.length && 4 * size < array.length) { ensureCapacity(array.length / 2); } } return result; } /** * Create a heap from an array of elements. The elements of the array are * not destroyed. The method has linear time complexity. * * @param * the type of keys maintained by the heap * @param array * an array of elements * @return a binary heap * @throws IllegalArgumentException * in case the array is null */ @LinearTime public static BinaryArrayBulkInsertWeakHeap heapify(K[] array) { if (array == null) { throw new IllegalArgumentException("Array cannot be null"); } if (array.length == 0) { return new BinaryArrayBulkInsertWeakHeap(); } BinaryArrayBulkInsertWeakHeap h = new BinaryArrayBulkInsertWeakHeap(array.length); System.arraycopy(array, 0, h.array, 0, array.length); h.size = array.length; for (int j = h.size - 1; j > 0; j--) { h.join(h.dancestor(j), j); } return h; } /** * Create a heap from an array of elements. The elements of the array are * not destroyed. The method has linear time complexity. * * @param * the type of keys maintained by the heap * @param array * an array of elements * @param comparator * the comparator to use * @return a binary heap * @throws IllegalArgumentException * in case the array is null */ @LinearTime public static BinaryArrayBulkInsertWeakHeap heapify(K[] array, Comparator comparator) { if (array == null) { throw new IllegalArgumentException("Array cannot be null"); } if (array.length == 0) { return new BinaryArrayBulkInsertWeakHeap(comparator); } BinaryArrayBulkInsertWeakHeap h = new BinaryArrayBulkInsertWeakHeap(comparator, array.length); System.arraycopy(array, 0, h.array, 0, array.length); h.size = array.length; for (int j = h.size - 1; j > 0; j--) { h.joinWithComparator(h.dancestor(j), j); } return h; } /** * Check if the bulk insertion buffer is full. * * @return true if the bulk insertion buffer is full, false otherwise */ protected boolean isBulkInsertionBufferFull() { if (insertionBufferSize >= insertionBuffer.length) { return true; } double sizeAsDouble = size + insertionBufferSize; return Math.getExponent(sizeAsDouble) + 3 >= insertionBuffer.length; } /** * Bulk insert from insertion buffer into the weak heap. */ protected void bulkInsert() { if (insertionBufferSize == 0) { return; } int right = size + insertionBufferSize - 2; int left = Math.max(size, right / 2); while (insertionBufferSize > 0) { --insertionBufferSize; array[size] = insertionBuffer[insertionBufferSize]; insertionBuffer[insertionBufferSize] = null; reverse.clear(size); ++size; } while (right > left + 1) { left = left / 2; right = right / 2; for (int j = left; j <= right; j++) { fixdown(j); } } if (left != 0) { int i = dancestor(left); fixdown(i); fixup(i); } if (right != 0) { int i = dancestor(right); fixdown(i); fixup(i); } insertionBufferMinPos = 0; } /** * Bulk insert from insertion buffer into the weak heap. */ protected void bulkInsertWithComparator() { if (insertionBufferSize == 0) { return; } int right = size + insertionBufferSize - 2; int left = Math.max(size, right / 2); while (insertionBufferSize > 0) { --insertionBufferSize; array[size] = insertionBuffer[insertionBufferSize]; insertionBuffer[insertionBufferSize] = null; reverse.clear(size); ++size; } while (right > left + 1) { left = left / 2; right = right / 2; for (int j = left; j <= right; j++) { fixdownWithComparator(j); } } if (left != 0) { int i = dancestor(left); fixdownWithComparator(i); fixupWithComparator(i); } if (right != 0) { int i = dancestor(right); fixdownWithComparator(i); fixupWithComparator(i); } insertionBufferMinPos = 0; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy