org.jheaps.array.BinaryArrayBulkInsertWeakHeap Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
/*
* (C) Copyright 2014-2016, by Dimitrios Michail
*
* JHeaps Library
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.jheaps.array;
import java.io.Serializable;
import java.util.Comparator;
import java.util.NoSuchElementException;
import org.jheaps.annotations.ConstantTime;
import org.jheaps.annotations.LinearTime;
import org.jheaps.annotations.LogarithmicTime;
/**
* An array based binary weak heap using bulk insertion. The heap is sorted
* according to the {@linkplain Comparable natural ordering} of its keys, or by
* a {@link Comparator} provided at heap creation time, depending on which
* constructor is used.
*
*
* The implementation uses an array in order to store the elements and
* automatically maintains the size of the array much like a
* {@link java.util.Vector} does, providing amortized O(1) time cost for the
* {@code insert} and amortized O(log(n)) for the {@code deleteMin} operation.
* Operation {@code findMin}, is a worst-case O(1) operation.
*
*
* Constructing such a heap from an array of elements can be performed using the
* method {@link #heapify(Object[])} or {@link #heapify(Object[], Comparator)}
* in linear time.
*
*
* Note that the ordering maintained by a binary heap, like any heap, and
* whether or not an explicit comparator is provided, must be consistent
* with {@code equals} if this heap is to correctly implement the
* {@code Heap} interface. (See {@code Comparable} or {@code Comparator} for a
* precise definition of consistent with equals.) This is so because
* the {@code Heap} interface is defined in terms of the {@code equals}
* operation, but a binary heap performs all key comparisons using its
* {@code compareTo} (or {@code compare}) method, so two keys that are deemed
* equal by this method are, from the standpoint of the binary heap, equal. The
* behavior of a heap is well-defined even if its ordering is
* inconsistent with {@code equals}; it just fails to obey the general contract
* of the {@code Heap} interface.
*
*
* Note that this implementation is not synchronized. If
* multiple threads access a heap concurrently, and at least one of the threads
* modifies the heap structurally, it must be synchronized externally.
* (A structural modification is any operation that adds or deletes one or more
* elements or changing the key of some element.) This is typically accomplished
* by synchronizing on some object that naturally encapsulates the heap.
*
* @param
* the type of keys maintained by this heap
*
* @author Dimitrios Michail
*/
public class BinaryArrayBulkInsertWeakHeap extends BinaryArrayWeakHeap implements Serializable {
private final static long serialVersionUID = 1;
/**
* Insertion buffer capacity for integer size since we are using Java arrays
* to store elements.
*/
protected static final int INSERTION_BUFFER_CAPACITY = 32 + 2;
/**
* The insertion buffer
*/
protected K[] insertionBuffer;
/**
* Number of elements in the insertion buffer
*/
protected int insertionBufferSize;
/**
* Position of minimum in the insertion buffer
*/
protected int insertionBufferMinPos;
/**
* Constructs a new, empty heap, using the natural ordering of its keys.
*
*
* All keys inserted into the heap must implement the {@link Comparable}
* interface. Furthermore, all such keys must be mutually
* comparable: {@code k1.compareTo(k2)} must not throw a
* {@code ClassCastException} for any keys {@code k1} and {@code k2} in the
* heap. If the user attempts to put a key into the heap that violates this
* constraint (for example, the user attempts to put a string key into a
* heap whose keys are integers), the {@code insert(Object key)} call will
* throw a {@code ClassCastException}.
*
*
* The initial capacity of the heap is
* {@link BinaryArrayBulkInsertWeakHeap#DEFAULT_HEAP_CAPACITY} and adjusts
* automatically based on the sequence of insertions and deletions.
*/
public BinaryArrayBulkInsertWeakHeap() {
this(null, DEFAULT_HEAP_CAPACITY);
}
/**
* Constructs a new, empty heap, with a provided initial capacity using the
* natural ordering of its keys.
*
*
* All keys inserted into the heap must implement the {@link Comparable}
* interface. Furthermore, all such keys must be mutually
* comparable: {@code k1.compareTo(k2)} must not throw a
* {@code ClassCastException} for any keys {@code k1} and {@code k2} in the
* heap. If the user attempts to put a key into the heap that violates this
* constraint (for example, the user attempts to put a string key into a
* heap whose keys are integers), the {@code insert(Object key)} call will
* throw a {@code ClassCastException}.
*
*
* The initial capacity of the heap is provided by the user and is adjusted
* automatically based on the sequence of insertions and deletions.
*
* @param capacity
* the initial heap capacity
*/
public BinaryArrayBulkInsertWeakHeap(int capacity) {
this(null, capacity);
}
/**
* Constructs a new, empty heap, ordered according to the given comparator.
*
*
* All keys inserted into the heap must be mutually comparable by
* the given comparator: {@code comparator.compare(k1,
* k2)} must not throw a {@code ClassCastException} for any keys {@code k1}
* and {@code k2} in the heap. If the user attempts to put a key into the
* heap that violates this constraint, the {@code insert(Object key)} call
* will throw a {@code ClassCastException}.
*
*
* The initial capacity of the heap is
* {@link BinaryArrayBulkInsertWeakHeap#DEFAULT_HEAP_CAPACITY} and adjusts
* automatically based on the sequence of insertions and deletions.
*
* @param comparator
* the comparator that will be used to order this heap. If
* {@code null}, the {@linkplain Comparable natural ordering} of
* the keys will be used.
*/
public BinaryArrayBulkInsertWeakHeap(Comparator super K> comparator) {
this(comparator, DEFAULT_HEAP_CAPACITY);
}
/**
* Constructs a new, empty heap, with a provided initial capacity ordered
* according to the given comparator.
*
*
* All keys inserted into the heap must be mutually comparable by
* the given comparator: {@code comparator.compare(k1,
* k2)} must not throw a {@code ClassCastException} for any keys {@code k1}
* and {@code k2} in the heap. If the user attempts to put a key into the
* heap that violates this constraint, the {@code insert(Object key)} call
* will throw a {@code ClassCastException}.
*
*
* The initial capacity of the heap is provided by the user and is adjusted
* automatically based on the sequence of insertions and deletions.
*
* @param comparator
* the comparator that will be used to order this heap. If
* {@code null}, the {@linkplain Comparable natural ordering} of
* the keys will be used.
* @param capacity
* the initial heap capacity
*/
@SuppressWarnings("unchecked")
public BinaryArrayBulkInsertWeakHeap(Comparator super K> comparator, int capacity) {
super(comparator, capacity);
this.insertionBuffer = (K[]) new Object[INSERTION_BUFFER_CAPACITY];
this.insertionBufferSize = 0;
this.insertionBufferMinPos = 0;
}
/**
* {@inheritDoc}
*/
@Override
@ConstantTime
public boolean isEmpty() {
return size + insertionBufferSize == 0;
}
/**
* {@inheritDoc}
*/
@Override
@ConstantTime
public long size() {
return size + insertionBufferSize;
}
/**
* {@inheritDoc}
*/
@Override
@ConstantTime
public void clear() {
size = 0;
insertionBufferSize = 0;
insertionBufferMinPos = 0;
}
/**
* {@inheritDoc}
*/
@Override
@ConstantTime
@SuppressWarnings("unchecked")
public K findMin() {
if (size + insertionBufferSize == 0) {
throw new NoSuchElementException();
}
if (insertionBufferSize == 0) {
return array[0];
} else if (size == 0) {
return insertionBuffer[insertionBufferMinPos];
} else {
K insertionBufferMin = insertionBuffer[insertionBufferMinPos];
if (comparator == null) {
if (((Comparable super K>) array[0]).compareTo(insertionBufferMin) <= 0) {
return array[0];
} else {
return insertionBufferMin;
}
} else {
if (comparator.compare(array[0], insertionBufferMin) <= 0) {
return array[0];
} else {
return insertionBufferMin;
}
}
}
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
@ConstantTime(amortized = true)
public void insert(K key) {
if (key == null) {
throw new NullPointerException("Null keys not permitted");
}
// add in buffer
insertionBuffer[insertionBufferSize++] = key;
if (isBulkInsertionBufferFull()) {
if (size + insertionBufferSize > array.length) {
// first try to double size
if (array.length == 0) {
ensureCapacity(1);
} else {
ensureCapacity(2 * array.length);
}
// if not enough, set to requested size
ensureCapacity(size + insertionBufferSize);
}
if (comparator == null) {
bulkInsert();
} else {
bulkInsertWithComparator();
}
} else if (insertionBufferSize > 1) {
// update minimum
K insertionBufferMin = insertionBuffer[insertionBufferMinPos];
if (comparator == null) {
if (((Comparable super K>) key).compareTo(insertionBufferMin) < 0) {
insertionBufferMinPos = insertionBufferSize - 1;
}
} else {
if (comparator.compare(key, insertionBufferMin) < 0) {
insertionBufferMinPos = insertionBufferSize - 1;
}
}
}
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
@LogarithmicTime(amortized = true)
public K deleteMin() {
if (size + insertionBufferSize == 0) {
throw new NoSuchElementException();
}
// where is the minimum
boolean deleteFromInsertionBuffer = false;
if (size == 0) {
deleteFromInsertionBuffer = true;
} else if (insertionBufferSize > 0) {
K arrayMin = array[0];
K insertionBufferMin = insertionBuffer[insertionBufferMinPos];
if (comparator == null) {
if (((Comparable super K>) insertionBufferMin).compareTo(arrayMin) < 0) {
deleteFromInsertionBuffer = true;
}
} else {
if (comparator.compare(insertionBufferMin, arrayMin) < 0) {
deleteFromInsertionBuffer = true;
}
}
}
K result;
if (deleteFromInsertionBuffer) {
result = insertionBuffer[insertionBufferMinPos];
insertionBuffer[insertionBufferMinPos] = insertionBuffer[insertionBufferSize - 1];
insertionBuffer[insertionBufferSize - 1] = null;
insertionBufferSize--;
insertionBufferMinPos = 0;
if (comparator == null) {
for (int i = 1; i < insertionBufferSize; i++) {
if (((Comparable super K>) insertionBuffer[i])
.compareTo(insertionBuffer[insertionBufferMinPos]) < 0) {
insertionBufferMinPos = i;
}
}
} else {
for (int i = 1; i < insertionBufferSize; i++) {
if (comparator.compare(insertionBuffer[i], insertionBuffer[insertionBufferMinPos]) < 0) {
insertionBufferMinPos = i;
}
}
}
} else {
result = array[0];
size--;
array[0] = array[size];
array[size] = null;
if (size > 1) {
if (comparator == null) {
fixdown(0);
} else {
fixdownWithComparator(0);
}
}
if (minCapacity <= array.length && 4 * size < array.length) {
ensureCapacity(array.length / 2);
}
}
return result;
}
/**
* Create a heap from an array of elements. The elements of the array are
* not destroyed. The method has linear time complexity.
*
* @param
* the type of keys maintained by the heap
* @param array
* an array of elements
* @return a binary heap
* @throws IllegalArgumentException
* in case the array is null
*/
@LinearTime
public static BinaryArrayBulkInsertWeakHeap heapify(K[] array) {
if (array == null) {
throw new IllegalArgumentException("Array cannot be null");
}
if (array.length == 0) {
return new BinaryArrayBulkInsertWeakHeap();
}
BinaryArrayBulkInsertWeakHeap h = new BinaryArrayBulkInsertWeakHeap(array.length);
System.arraycopy(array, 0, h.array, 0, array.length);
h.size = array.length;
for (int j = h.size - 1; j > 0; j--) {
h.join(h.dancestor(j), j);
}
return h;
}
/**
* Create a heap from an array of elements. The elements of the array are
* not destroyed. The method has linear time complexity.
*
* @param
* the type of keys maintained by the heap
* @param array
* an array of elements
* @param comparator
* the comparator to use
* @return a binary heap
* @throws IllegalArgumentException
* in case the array is null
*/
@LinearTime
public static BinaryArrayBulkInsertWeakHeap heapify(K[] array, Comparator super K> comparator) {
if (array == null) {
throw new IllegalArgumentException("Array cannot be null");
}
if (array.length == 0) {
return new BinaryArrayBulkInsertWeakHeap(comparator);
}
BinaryArrayBulkInsertWeakHeap h = new BinaryArrayBulkInsertWeakHeap(comparator, array.length);
System.arraycopy(array, 0, h.array, 0, array.length);
h.size = array.length;
for (int j = h.size - 1; j > 0; j--) {
h.joinWithComparator(h.dancestor(j), j);
}
return h;
}
/**
* Check if the bulk insertion buffer is full.
*
* @return true if the bulk insertion buffer is full, false otherwise
*/
protected boolean isBulkInsertionBufferFull() {
if (insertionBufferSize >= insertionBuffer.length) {
return true;
}
double sizeAsDouble = size + insertionBufferSize;
return Math.getExponent(sizeAsDouble) + 3 >= insertionBuffer.length;
}
/**
* Bulk insert from insertion buffer into the weak heap.
*/
protected void bulkInsert() {
if (insertionBufferSize == 0) {
return;
}
int right = size + insertionBufferSize - 2;
int left = Math.max(size, right / 2);
while (insertionBufferSize > 0) {
--insertionBufferSize;
array[size] = insertionBuffer[insertionBufferSize];
insertionBuffer[insertionBufferSize] = null;
reverse.clear(size);
++size;
}
while (right > left + 1) {
left = left / 2;
right = right / 2;
for (int j = left; j <= right; j++) {
fixdown(j);
}
}
if (left != 0) {
int i = dancestor(left);
fixdown(i);
fixup(i);
}
if (right != 0) {
int i = dancestor(right);
fixdown(i);
fixup(i);
}
insertionBufferMinPos = 0;
}
/**
* Bulk insert from insertion buffer into the weak heap.
*/
protected void bulkInsertWithComparator() {
if (insertionBufferSize == 0) {
return;
}
int right = size + insertionBufferSize - 2;
int left = Math.max(size, right / 2);
while (insertionBufferSize > 0) {
--insertionBufferSize;
array[size] = insertionBuffer[insertionBufferSize];
insertionBuffer[insertionBufferSize] = null;
reverse.clear(size);
++size;
}
while (right > left + 1) {
left = left / 2;
right = right / 2;
for (int j = left; j <= right; j++) {
fixdownWithComparator(j);
}
}
if (left != 0) {
int i = dancestor(left);
fixdownWithComparator(i);
fixupWithComparator(i);
}
if (right != 0) {
int i = dancestor(right);
fixdownWithComparator(i);
fixupWithComparator(i);
}
insertionBufferMinPos = 0;
}
}