org.jheaps.array.MinMaxBinaryArrayDoubleEndedHeap Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
package org.jheaps.array;
import java.io.Serializable;
import java.util.Comparator;
import java.util.NoSuchElementException;
import org.jheaps.Constants;
import org.jheaps.DoubleEndedHeap;
import org.jheaps.annotations.LinearTime;
import org.jheaps.annotations.VisibleForTesting;
/**
* An array based binary MinMax heap. The heap is sorted according to the
* {@linkplain Comparable natural ordering} of its keys, or by a
* {@link Comparator} provided at heap creation time, depending on which
* constructor is used.
*
*
* For details about the implementation see the following
* paper:
*
* - M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte. Min-max Heaps
* and Generalized Priority Queues. Commun. ACM, 29(10), 996--1000, 1986.
*
*
*
* The implementation uses an array in order to store the elements and
* automatically maintains the size of the array much like a
* {@link java.util.Vector} does, providing amortized O(log(n)) time cost for
* the {@code insert}, {@code deleteMin}, and {@code deleteMax} operations.
* Operations {@code findMin} and {@code findMax} are worst-case O(1). The
* bounds are worst-case if the user initializes the heap with a capacity larger
* or equal to the total number of elements that are going to be inserted into
* the heap.
*
*
* Constructing such a heap from an array of elements can be performed using the
* method {@link #heapify(Object[])} or {@link #heapify(Object[], Comparator)}
* in linear time.
*
*
* Note that the ordering maintained by this heap, like any heap, and whether or
* not an explicit comparator is provided, must be consistent with
* {@code equals} if this heap is to correctly implement the {@code Heap}
* interface. (See {@code Comparable} or {@code Comparator} for a precise
* definition of consistent with equals.) This is so because the
* {@code Heap} interface is defined in terms of the {@code equals} operation,
* but this heap performs all key comparisons using its {@code compareTo} (or
* {@code compare}) method, so two keys that are deemed equal by this method
* are, from the standpoint of this heap, equal. The behavior of a heap
* is well-defined even if its ordering is inconsistent with
* {@code equals}; it just fails to obey the general contract of the
* {@code Heap} interface.
*
*
* Note that this implementation is not synchronized. If
* multiple threads access a heap concurrently, and at least one of the threads
* modifies the heap structurally, it must be synchronized externally.
* (A structural modification is any operation that adds or deletes one or more
* elements or changing the key of some element.) This is typically accomplished
* by synchronizing on some object that naturally encapsulates the heap.
*
* @param
* the type of keys maintained by this heap
*
* @author Dimitrios Michail
*/
public class MinMaxBinaryArrayDoubleEndedHeap extends AbstractArrayHeap
implements DoubleEndedHeap, Serializable {
private static final long serialVersionUID = -8985374211686556917L;
/**
* Default initial capacity of the heap.
*/
public static final int DEFAULT_HEAP_CAPACITY = 16;
/**
* Constructs a new, empty heap, using the natural ordering of its keys.
*
*
* All keys inserted into the heap must implement the {@link Comparable}
* interface. Furthermore, all such keys must be mutually
* comparable: {@code k1.compareTo(k2)} must not throw a
* {@code ClassCastException} for any keys {@code k1} and {@code k2} in the
* heap. If the user attempts to put a key into the heap that violates this
* constraint (for example, the user attempts to put a string key into a
* heap whose keys are integers), the {@code insert(Object key)} call will
* throw a {@code ClassCastException}.
*
*
* The initial capacity of the heap is {@link #DEFAULT_HEAP_CAPACITY} and
* adjusts automatically based on the sequence of insertions and deletions.
*/
public MinMaxBinaryArrayDoubleEndedHeap() {
super(null, DEFAULT_HEAP_CAPACITY);
}
/**
* Constructs a new, empty heap, with a provided initial capacity using the
* natural ordering of its keys.
*
*
* All keys inserted into the heap must implement the {@link Comparable}
* interface. Furthermore, all such keys must be mutually
* comparable: {@code k1.compareTo(k2)} must not throw a
* {@code ClassCastException} for any keys {@code k1} and {@code k2} in the
* heap. If the user attempts to put a key into the heap that violates this
* constraint (for example, the user attempts to put a string key into a
* heap whose keys are integers), the {@code insert(Object key)} call will
* throw a {@code ClassCastException}.
*
*
* The initial capacity of the heap is provided by the user and is adjusted
* automatically based on the sequence of insertions and deletions. The
* capacity will never become smaller than the initial requested capacity.
*
* @param capacity
* the initial heap capacity
*/
public MinMaxBinaryArrayDoubleEndedHeap(int capacity) {
super(null, capacity);
}
/**
* Constructs a new, empty heap, ordered according to the given comparator.
*
*
* All keys inserted into the heap must be mutually comparable by
* the given comparator: {@code comparator.compare(k1,
* k2)} must not throw a {@code ClassCastException} for any keys {@code k1}
* and {@code k2} in the heap. If the user attempts to put a key into the
* heap that violates this constraint, the {@code insert(Object key)} call
* will throw a {@code ClassCastException}.
*
*
* The initial capacity of the heap is {@link #DEFAULT_HEAP_CAPACITY} and
* adjusts automatically based on the sequence of insertions and deletions.
*
* @param comparator
* the comparator that will be used to order this heap. If
* {@code null}, the {@linkplain Comparable natural ordering} of
* the keys will be used.
*/
public MinMaxBinaryArrayDoubleEndedHeap(Comparator super K> comparator) {
super(comparator, DEFAULT_HEAP_CAPACITY);
}
/**
* Constructs a new, empty heap, with a provided initial capacity ordered
* according to the given comparator.
*
*
* All keys inserted into the heap must be mutually comparable by
* the given comparator: {@code comparator.compare(k1,
* k2)} must not throw a {@code ClassCastException} for any keys {@code k1}
* and {@code k2} in the heap. If the user attempts to put a key into the
* heap that violates this constraint, the {@code insert(Object key)} call
* will throw a {@code ClassCastException}.
*
*
* The initial capacity of the heap is provided by the user and is adjusted
* automatically based on the sequence of insertions and deletions.The
* capacity will never become smaller than the initial requested capacity.
*
* @param comparator
* the comparator that will be used to order this heap. If
* {@code null}, the {@linkplain Comparable natural ordering} of
* the keys will be used.
* @param capacity
* the initial heap capacity
*/
public MinMaxBinaryArrayDoubleEndedHeap(Comparator super K> comparator, int capacity) {
super(comparator, capacity);
}
/**
* Create a heap from an array of elements. The elements of the array are
* not destroyed. The method has linear time complexity.
*
* @param
* the type of keys maintained by the heap
* @param array
* an array of elements
* @return a heap
* @throws IllegalArgumentException
* in case the array is null
*/
@LinearTime
public static MinMaxBinaryArrayDoubleEndedHeap heapify(K[] array) {
if (array == null) {
throw new IllegalArgumentException("Array cannot be null");
}
if (array.length == 0) {
return new MinMaxBinaryArrayDoubleEndedHeap();
}
MinMaxBinaryArrayDoubleEndedHeap h = new MinMaxBinaryArrayDoubleEndedHeap(array.length);
System.arraycopy(array, 0, h.array, 1, array.length);
h.size = array.length;
for (int i = array.length / 2; i > 0; i--) {
h.fixdown(i);
}
return h;
}
/**
* Create a heap from an array of elements. The elements of the array are
* not destroyed. The method has linear time complexity.
*
* @param
* the type of keys maintained by the heap
* @param array
* an array of elements
* @param comparator
* the comparator to use
* @return a heap
* @throws IllegalArgumentException
* in case the array is null
*/
@LinearTime
public static MinMaxBinaryArrayDoubleEndedHeap heapify(K[] array, Comparator super K> comparator) {
if (array == null) {
throw new IllegalArgumentException("Array cannot be null");
}
if (array.length == 0) {
return new MinMaxBinaryArrayDoubleEndedHeap(comparator);
}
MinMaxBinaryArrayDoubleEndedHeap h = new MinMaxBinaryArrayDoubleEndedHeap(comparator, array.length);
System.arraycopy(array, 0, h.array, 1, array.length);
h.size = array.length;
for (int i = array.length / 2; i > 0; i--) {
h.fixdownWithComparator(i);
}
return h;
}
/**
* Ensure that the array representation has the necessary capacity.
*
* @param capacity
* the requested capacity
*/
@Override
@SuppressWarnings("unchecked")
protected void ensureCapacity(int capacity) {
checkCapacity(capacity);
K[] newArray = (K[]) new Object[capacity + 1];
System.arraycopy(array, 1, newArray, 1, size);
array = newArray;
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
public K findMax() {
switch (size) {
case 0:
throw new NoSuchElementException();
case 1:
return array[1];
case 2:
return array[2];
default:
if (comparator == null) {
if (((Comparable super K>) array[3]).compareTo(array[2]) > 0) {
return array[3];
} else {
return array[2];
}
} else {
if (comparator.compare(array[3], array[2]) > 0) {
return array[3];
} else {
return array[2];
}
}
}
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
public K deleteMax() {
K result;
switch (size) {
case 0:
throw new NoSuchElementException();
case 1:
result = array[1];
array[1] = null;
size--;
break;
case 2:
result = array[2];
array[2] = null;
size--;
break;
default:
if (comparator == null) {
if (((Comparable super K>) array[3]).compareTo(array[2]) > 0) {
result = array[3];
array[3] = array[size];
array[size] = null;
size--;
if (size >= 3) {
fixdownMax(3);
}
} else {
result = array[2];
array[2] = array[size];
array[size] = null;
size--;
fixdownMax(2);
}
} else {
if (comparator.compare(array[3], array[2]) > 0) {
result = array[3];
array[3] = array[size];
array[size] = null;
size--;
if (size >= 3) {
fixdownMaxWithComparator(3);
}
} else {
result = array[2];
array[2] = array[size];
array[size] = null;
size--;
fixdownMaxWithComparator(2);
}
}
break;
}
if (Constants.NOT_BENCHMARK) {
if (2 * minCapacity < array.length - 1 && 4 * size < array.length - 1) {
ensureCapacity((array.length - 1) / 2);
}
}
return result;
}
/**
* Upwards fix starting from a particular element
*
* @param k
* the index of the starting element
*/
@Override
@SuppressWarnings("unchecked")
protected void fixup(int k) {
if (onMinLevel(k)) {
int p = k / 2;
K kValue = array[k];
if (p > 0 && ((Comparable super K>) array[p]).compareTo(kValue) < 0) {
array[k] = array[p];
array[p] = kValue;
fixupMax(p);
} else {
fixupMin(k);
}
} else {
int p = k / 2;
K kValue = array[k];
if (p > 0 && ((Comparable super K>) kValue).compareTo(array[p]) < 0) {
array[k] = array[p];
array[p] = kValue;
fixupMin(p);
} else {
fixupMax(k);
}
}
}
/**
* Upwards fix starting from a particular element
*
* @param k
* the index of the starting element
*/
protected void fixupWithComparator(int k) {
if (onMinLevel(k)) {
int p = k / 2;
K kValue = array[k];
if (p > 0 && comparator.compare(array[p], kValue) < 0) {
array[k] = array[p];
array[p] = kValue;
fixupMaxWithComparator(p);
} else {
fixupMinWithComparator(k);
}
} else {
int p = k / 2;
K kValue = array[k];
if (p > 0 && comparator.compare(kValue, array[p]) < 0) {
array[k] = array[p];
array[p] = kValue;
fixupMinWithComparator(p);
} else {
fixupMaxWithComparator(k);
}
}
}
/**
* Upwards fix starting from a particular element at a minimum level
*
* @param k
* the index of the starting element
*/
@SuppressWarnings("unchecked")
private void fixupMin(int k) {
K key = array[k];
int gp = k / 4;
while (gp > 0 && ((Comparable super K>) array[gp]).compareTo(key) > 0) {
array[k] = array[gp];
k = gp;
gp = k / 4;
}
array[k] = key;
}
/**
* Upwards fix starting from a particular element at a minimum level.
* Performs comparisons using the comparator.
*
* @param k
* the index of the starting element
*/
private void fixupMinWithComparator(int k) {
K key = array[k];
int gp = k / 4;
while (gp > 0 && comparator.compare(array[gp], key) > 0) {
array[k] = array[gp];
k = gp;
gp = k / 4;
}
array[k] = key;
}
/**
* Upwards fix starting from a particular element at a maximum level
*
* @param k
* the index of the starting element
*/
@SuppressWarnings("unchecked")
private void fixupMax(int k) {
K key = array[k];
int gp = k / 4;
while (gp > 0 && ((Comparable super K>) array[gp]).compareTo(key) < 0) {
array[k] = array[gp];
k = gp;
gp = k / 4;
}
array[k] = key;
}
/**
* Upwards fix starting from a particular element at a maximum level.
* Performs comparisons using the comparator.
*
* @param k
* the index of the starting element
*/
private void fixupMaxWithComparator(int k) {
K key = array[k];
int gp = k / 4;
while (gp > 0 && comparator.compare(array[gp], key) < 0) {
array[k] = array[gp];
k = gp;
gp = k / 4;
}
array[k] = key;
}
/**
* Downwards fix starting from a particular element.
*
* @param k
* the index of the starting element
*/
@Override
protected void fixdown(int k) {
if (onMinLevel(k)) {
fixdownMin(k);
} else {
fixdownMax(k);
}
}
/**
* Downwards fix starting from a particular element. Performs comparisons
* using the comparator.
*
* @param k
* the index of the starting element
*/
@Override
protected void fixdownWithComparator(int k) {
if (onMinLevel(k)) {
fixdownMinWithComparator(k);
} else {
fixdownMaxWithComparator(k);
}
}
/**
* Downwards fix starting from a particular element at a minimum level.
*
* @param k
* the index of the starting element
*/
@SuppressWarnings("unchecked")
private void fixdownMin(int k) {
int c = 2 * k;
while (c <= size) {
int m = minChildOrGrandchild(k);
if (m > c + 1) { // grandchild
if (((Comparable super K>) array[m]).compareTo(array[k]) >= 0) {
break;
}
K tmp = array[k];
array[k] = array[m];
array[m] = tmp;
if (((Comparable super K>) array[m]).compareTo(array[m / 2]) > 0) {
tmp = array[m];
array[m] = array[m / 2];
array[m / 2] = tmp;
}
// go down
k = m;
c = 2 * k;
} else { // child
if (((Comparable super K>) array[m]).compareTo(array[k]) < 0) {
K tmp = array[k];
array[k] = array[m];
array[m] = tmp;
}
break;
}
}
}
/**
* Downwards fix starting from a particular element at a minimum level.
* Performs comparisons using the comparator.
*
* @param k
* the index of the starting element
*/
private void fixdownMinWithComparator(int k) {
int c = 2 * k;
while (c <= size) {
int m = minChildOrGrandchildWithComparator(k);
if (m > c + 1) { // grandchild
if (comparator.compare(array[m], array[k]) >= 0) {
break;
}
K tmp = array[k];
array[k] = array[m];
array[m] = tmp;
if (comparator.compare(array[m], array[m / 2]) > 0) {
tmp = array[m];
array[m] = array[m / 2];
array[m / 2] = tmp;
}
// go down
k = m;
c = 2 * k;
} else { // child
if (comparator.compare(array[m], array[k]) < 0) {
K tmp = array[k];
array[k] = array[m];
array[m] = tmp;
}
break;
}
}
}
/**
* Downwards fix starting from a particular element at a maximum level.
*
* @param k
* the index of the starting element
*/
@SuppressWarnings("unchecked")
private void fixdownMax(int k) {
int c = 2 * k;
while (c <= size) {
int m = maxChildOrGrandchild(k);
if (m > c + 1) { // grandchild
if (((Comparable super K>) array[m]).compareTo(array[k]) <= 0) {
break;
}
K tmp = array[k];
array[k] = array[m];
array[m] = tmp;
if (((Comparable super K>) array[m]).compareTo(array[m / 2]) < 0) {
tmp = array[m];
array[m] = array[m / 2];
array[m / 2] = tmp;
}
// go down
k = m;
c = 2 * k;
} else { // child
if (((Comparable super K>) array[m]).compareTo(array[k]) > 0) {
K tmp = array[k];
array[k] = array[m];
array[m] = tmp;
}
break;
}
}
}
/**
* Downwards fix starting from a particular element at a maximum level.
* Performs comparisons using the comparator.
*
* @param k
* the index of the starting element
*/
private void fixdownMaxWithComparator(int k) {
int c = 2 * k;
while (c <= size) {
int m = maxChildOrGrandchildWithComparator(k);
if (m > c + 1) { // grandchild
if (comparator.compare(array[m], array[k]) <= 0) {
break;
}
K tmp = array[k];
array[k] = array[m];
array[m] = tmp;
if (comparator.compare(array[m], array[m / 2]) < 0) {
tmp = array[m];
array[m] = array[m / 2];
array[m / 2] = tmp;
}
// go down
k = m;
c = 2 * k;
} else { // child
if (comparator.compare(array[m], array[k]) > 0) {
K tmp = array[k];
array[k] = array[m];
array[m] = tmp;
}
break;
}
}
}
/**
* Return true if on a minimum level, false otherwise.
*
* @param k
* the element
* @return true if on a minimum level, false otherwise
*/
@VisibleForTesting
boolean onMinLevel(int k) {
float kAsFloat = k;
int exponent = Math.getExponent(kAsFloat);
return exponent % 2 == 0;
}
/**
* Given a node at a maximum level, find its child or grandchild with the
* maximum key. This method should not be called for a node which has no
* children.
*
* @param k
* a node at a maximum level
* @return the child or grandchild with a maximum key, or undefined if there
* are no children
*/
@SuppressWarnings("unchecked")
private int maxChildOrGrandchild(int k) {
int gc = 4 * k;
int maxgc;
K gcValue;
// 4 grandchilden
if (gc + 3 <= size) {
gcValue = array[gc];
maxgc = gc;
if (((Comparable super K>) array[++gc]).compareTo(gcValue) > 0) {
gcValue = array[gc];
maxgc = gc;
}
if (((Comparable super K>) array[++gc]).compareTo(gcValue) > 0) {
gcValue = array[gc];
maxgc = gc;
}
if (((Comparable super K>) array[++gc]).compareTo(gcValue) > 0) {
maxgc = gc;
}
return maxgc;
}
// less or equal to 3
switch (size - gc) {
case 2:
// 3 grandchildren, two children
gcValue = array[gc];
maxgc = gc;
if (((Comparable super K>) array[++gc]).compareTo(gcValue) > 0) {
gcValue = array[gc];
maxgc = gc;
}
if (((Comparable super K>) array[++gc]).compareTo(gcValue) > 0) {
maxgc = gc;
}
return maxgc;
case 1:
// 2 grandchildren, maybe two children
gcValue = array[gc];
maxgc = gc;
if (((Comparable super K>) array[++gc]).compareTo(gcValue) > 0) {
gcValue = array[gc];
maxgc = gc;
}
if (2 * k + 1 <= size && ((Comparable super K>) array[2 * k + 1]).compareTo(gcValue) > 0) {
maxgc = 2 * k + 1;
}
return maxgc;
case 0:
// 1 grandchild, maybe two children
gcValue = array[gc];
maxgc = gc;
if (2 * k + 1 <= size && ((Comparable super K>) array[2 * k + 1]).compareTo(gcValue) > 0) {
maxgc = 2 * k + 1;
}
return maxgc;
}
// 0 grandchildren
maxgc = 2 * k;
gcValue = array[maxgc];
if (2 * k + 1 <= size && ((Comparable super K>) array[2 * k + 1]).compareTo(gcValue) > 0) {
maxgc = 2 * k + 1;
}
return maxgc;
}
/**
* Given a node at a maximum level, find its child or grandchild with the
* maximum key. This method should not be called for a node which has no
* children.
*
* @param k
* a node at a maximum level
* @return the child or grandchild with a maximum key, or undefined if there
* are no children
*/
private int maxChildOrGrandchildWithComparator(int k) {
int gc = 4 * k;
int maxgc;
K gcValue;
// 4 grandchilden
if (gc + 3 <= size) {
gcValue = array[gc];
maxgc = gc;
if (comparator.compare(array[++gc], gcValue) > 0) {
gcValue = array[gc];
maxgc = gc;
}
if (comparator.compare(array[++gc], gcValue) > 0) {
gcValue = array[gc];
maxgc = gc;
}
if (comparator.compare(array[++gc], gcValue) > 0) {
maxgc = gc;
}
return maxgc;
}
// less or equal to 3
switch (size - gc) {
case 2:
// 3 grandchildren, two children
gcValue = array[gc];
maxgc = gc;
if (comparator.compare(array[++gc], gcValue) > 0) {
gcValue = array[gc];
maxgc = gc;
}
if (comparator.compare(array[++gc], gcValue) > 0) {
maxgc = gc;
}
return maxgc;
case 1:
// 2 grandchildren, maybe two children
gcValue = array[gc];
maxgc = gc;
if (comparator.compare(array[++gc], gcValue) > 0) {
gcValue = array[gc];
maxgc = gc;
}
if (2 * k + 1 <= size && comparator.compare(array[2 * k + 1], gcValue) > 0) {
maxgc = 2 * k + 1;
}
return maxgc;
case 0:
// 1 grandchild, maybe two children
gcValue = array[gc];
maxgc = gc;
if (2 * k + 1 <= size && comparator.compare(array[2 * k + 1], gcValue) > 0) {
maxgc = 2 * k + 1;
}
return maxgc;
}
// 0 grandchildren
maxgc = 2 * k;
gcValue = array[maxgc];
if (2 * k + 1 <= size && comparator.compare(array[2 * k + 1], gcValue) > 0) {
maxgc = 2 * k + 1;
}
return maxgc;
}
/**
* Given a node at a minimum level, find its child or grandchild with the
* minimum key. This method should not be called for a node which has no
* children.
*
* @param k
* a node at a minimum level
* @return the child or grandchild with a minimum key, or undefined if there
* are no children
*/
@SuppressWarnings("unchecked")
private int minChildOrGrandchild(int k) {
int gc = 4 * k;
int mingc;
K gcValue;
// 4 grandchilden
if (gc + 3 <= size) {
gcValue = array[gc];
mingc = gc;
if (((Comparable super K>) array[++gc]).compareTo(gcValue) < 0) {
gcValue = array[gc];
mingc = gc;
}
if (((Comparable super K>) array[++gc]).compareTo(gcValue) < 0) {
gcValue = array[gc];
mingc = gc;
}
if (((Comparable super K>) array[++gc]).compareTo(gcValue) < 0) {
mingc = gc;
}
return mingc;
}
// less or equal to 3
switch (size - gc) {
case 2:
// 3 grandchildren, two children
gcValue = array[gc];
mingc = gc;
if (((Comparable super K>) array[++gc]).compareTo(gcValue) < 0) {
gcValue = array[gc];
mingc = gc;
}
if (((Comparable super K>) array[++gc]).compareTo(gcValue) < 0) {
mingc = gc;
}
return mingc;
case 1:
// 2 grandchildren, maybe two children
gcValue = array[gc];
mingc = gc;
if (((Comparable super K>) array[++gc]).compareTo(gcValue) < 0) {
gcValue = array[gc];
mingc = gc;
}
if (2 * k + 1 <= size && ((Comparable super K>) array[2 * k + 1]).compareTo(gcValue) < 0) {
mingc = 2 * k + 1;
}
return mingc;
case 0:
// 1 grandchild, maybe two children
gcValue = array[gc];
mingc = gc;
if (2 * k + 1 <= size && ((Comparable super K>) array[2 * k + 1]).compareTo(gcValue) < 0) {
mingc = 2 * k + 1;
}
return mingc;
}
// 0 grandchildren
mingc = 2 * k;
gcValue = array[mingc];
if (2 * k + 1 <= size && ((Comparable super K>) array[2 * k + 1]).compareTo(gcValue) < 0) {
mingc = 2 * k + 1;
}
return mingc;
}
/**
* Given a node at a minimum level, find its child or grandchild with the
* minimum key. This method should not be called for a node which has no
* children.
*
* @param k
* a node at a minimum level
* @return the child or grandchild with a minimum key, or undefined if there
* are no children
*/
private int minChildOrGrandchildWithComparator(int k) {
int gc = 4 * k;
int mingc;
K gcValue;
// 4 grandchilden
if (gc + 3 <= size) {
gcValue = array[gc];
mingc = gc;
if (comparator.compare(array[++gc], gcValue) < 0) {
gcValue = array[gc];
mingc = gc;
}
if (comparator.compare(array[++gc], gcValue) < 0) {
gcValue = array[gc];
mingc = gc;
}
if (comparator.compare(array[++gc], gcValue) < 0) {
mingc = gc;
}
return mingc;
}
// less or equal to 3
switch (size - gc) {
case 2:
// 3 grandchildren, two children
gcValue = array[gc];
mingc = gc;
if (comparator.compare(array[++gc], gcValue) < 0) {
gcValue = array[gc];
mingc = gc;
}
if (comparator.compare(array[++gc], gcValue) < 0) {
mingc = gc;
}
return mingc;
case 1:
// 2 grandchildren, maybe two children
gcValue = array[gc];
mingc = gc;
if (comparator.compare(array[++gc], gcValue) < 0) {
gcValue = array[gc];
mingc = gc;
}
if (2 * k + 1 <= size && comparator.compare(array[2 * k + 1], gcValue) < 0) {
mingc = 2 * k + 1;
}
return mingc;
case 0:
// 1 grandchild, maybe two children
gcValue = array[gc];
mingc = gc;
if (2 * k + 1 <= size && comparator.compare(array[2 * k + 1], gcValue) < 0) {
mingc = 2 * k + 1;
}
return mingc;
}
// 0 grandchildren
mingc = 2 * k;
gcValue = array[mingc];
if (2 * k + 1 <= size && comparator.compare(array[2 * k + 1], gcValue) < 0) {
mingc = 2 * k + 1;
}
return mingc;
}
}