All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jheaps.tree.BinaryTreeAddressableHeap Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2014-2016, by Dimitrios Michail
 *
 * JHeaps Library
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.jheaps.tree;

import java.io.Serializable;
import java.util.BitSet;
import java.util.Comparator;
import java.util.NoSuchElementException;

import org.jheaps.AddressableHeap;
import org.jheaps.annotations.ConstantTime;
import org.jheaps.annotations.LogarithmicTime;

/**
 * An explicit binary tree addressable heap. The heap is sorted according to the
 * {@linkplain Comparable natural ordering} of its keys, or by a
 * {@link Comparator} provided at heap creation time, depending on which
 * constructor is used.
 *
 * 

* The worst-case cost of {@code insert}, {@code deleteMin}, {@code delete} and * {@code decreaceKey} operations is O(log(n)) and the cost of {@code findMin} * is O(1). * *

* Note that the ordering maintained by a binary heap, like any heap, and * whether or not an explicit comparator is provided, must be consistent * with {@code equals} if this heap is to correctly implement the * {@code Heap} interface. (See {@code Comparable} or {@code Comparator} for a * precise definition of consistent with equals.) This is so because * the {@code Heap} interface is defined in terms of the {@code equals} * operation, but a binary heap performs all key comparisons using its * {@code compareTo} (or {@code compare}) method, so two keys that are deemed * equal by this method are, from the standpoint of the binary heap, equal. The * behavior of a heap is well-defined even if its ordering is * inconsistent with {@code equals}; it just fails to obey the general contract * of the {@code Heap} interface. * *

* Note that this implementation is not synchronized. If * multiple threads access a heap concurrently, and at least one of the threads * modifies the heap structurally, it must be synchronized externally. * (A structural modification is any operation that adds or deletes one or more * elements or changing the key of some element.) This is typically accomplished * by synchronizing on some object that naturally encapsulates the heap. * * @param * the type of keys maintained by this heap * @param * the type of values maintained by this heap * * @author Dimitrios Michail * * @see AddressableHeap * @see Comparable * @see Comparator */ public class BinaryTreeAddressableHeap implements AddressableHeap, Serializable { private final static long serialVersionUID = 1; /** * The comparator used to maintain order in this heap, or null if it uses * the natural ordering of its keys. * * @serial */ private final Comparator comparator; /** * Size of the heap */ private long size; /** * Root node of the heap */ private Node root; /** * Constructs a new, empty heap, using the natural ordering of its keys. * *

* All keys inserted into the heap must implement the {@link Comparable} * interface. Furthermore, all such keys must be mutually * comparable: {@code k1.compareTo(k2)} must not throw a * {@code ClassCastException} for any keys {@code k1} and {@code k2} in the * heap. If the user attempts to put a key into the heap that violates this * constraint (for example, the user attempts to put a string key into a * heap whose keys are integers), the {@code insert(Object key)} call will * throw a {@code ClassCastException}. */ public BinaryTreeAddressableHeap() { this(null); } /** * Constructs a new, empty heap, ordered according to the given comparator. * *

* All keys inserted into the heap must be mutually comparable by * the given comparator: {@code comparator.compare(k1, * k2)} must not throw a {@code ClassCastException} for any keys {@code k1} * and {@code k2} in the heap. If the user attempts to put a key into the * heap that violates this constraint, the {@code insert(Object key)} call * will throw a {@code ClassCastException}. * * @param comparator * the comparator that will be used to order this heap. If * {@code null}, the {@linkplain Comparable natural ordering} of * the keys will be used. */ public BinaryTreeAddressableHeap(Comparator comparator) { this.comparator = comparator; this.size = 0; this.root = null; } /** * {@inheritDoc} */ @Override @LogarithmicTime public AddressableHeap.Handle insert(K key) { return insert(key, null); } /** * {@inheritDoc} */ @Override @LogarithmicTime @SuppressWarnings("unchecked") public AddressableHeap.Handle insert(K key, V value) { if (key == null) { throw new NullPointerException("Null keys not permitted"); } Node n = new Node(key, value); // easy special cases if (size == 0) { root = n; size = 1; return n; } else if (size == 1) { int c; if (comparator == null) { c = ((Comparable) key).compareTo(root.key); } else { c = comparator.compare(key, root.key); } if (c < 0) { n.o_c = root; root.y_s = n; root = n; } else { root.o_c = n; n.y_s = root; } size = 2; return n; } // find parent of last node and hang Node p = findParentNode(size + 1); if (p.o_c == null) { p.o_c = n; } else { p.o_c.y_s = n; } n.y_s = p; // increase size size++; // fix priorities fixup(n); return n; } /** * {@inheritDoc} */ @Override @ConstantTime public AddressableHeap.Handle findMin() { if (size == 0) { throw new NoSuchElementException(); } return root; } /** * {@inheritDoc} */ @Override @LogarithmicTime public AddressableHeap.Handle deleteMin() { if (size == 0) { throw new NoSuchElementException(); } Node oldRoot = root; // easy special cases if (size == 1) { root = null; size = 0; return oldRoot; } else if (size == 2) { root = root.o_c; root.o_c = null; root.y_s = null; size = 1; oldRoot.o_c = null; return oldRoot; } // remove last node Node lastNodeParent = findParentNode(size); Node lastNode = lastNodeParent.o_c; if (lastNode.y_s != lastNodeParent) { Node tmp = lastNode; lastNode = tmp.y_s; tmp.y_s = lastNodeParent; } else { lastNodeParent.o_c = null; } lastNode.y_s = null; // decrease size size--; // place it as root // (assumes root.o_c exists) if (root.o_c.y_s == root) { root.o_c.y_s = lastNode; } else { root.o_c.y_s.y_s = lastNode; } lastNode.o_c = root.o_c; root = lastNode; // fix priorities fixdown(root); oldRoot.o_c = null; return oldRoot; } /** * {@inheritDoc} */ @Override @ConstantTime public boolean isEmpty() { return size == 0; } /** * {@inheritDoc} */ @Override @ConstantTime public long size() { return size; } /** * {@inheritDoc} */ @Override public Comparator comparator() { return comparator; } /** * {@inheritDoc} */ @Override @ConstantTime public void clear() { root = null; size = 0; } // handle private class Node implements AddressableHeap.Handle, Serializable { private final static long serialVersionUID = 1; K key; V value; Node o_c; // older child Node y_s; // younger sibling or parent Node(K key, V value) { this.key = key; this.value = value; this.o_c = null; this.y_s = null; } @Override public K getKey() { return key; } @Override public V getValue() { return value; } @Override public void setValue(V value) { this.value = value; } @Override @LogarithmicTime @SuppressWarnings("unchecked") public void decreaseKey(K newKey) { if (this != root && y_s == null) { throw new IllegalArgumentException("Invalid handle!"); } int c; if (comparator == null) { c = ((Comparable) newKey).compareTo(key); } else { c = comparator.compare(newKey, key); } if (c > 0) { throw new IllegalArgumentException("Keys can only be decreased!"); } key = newKey; if (c == 0 || root == this) { return; } fixup(this); } @Override @LogarithmicTime public void delete() { if (this != root && y_s == null) { throw new IllegalArgumentException("Invalid handle!"); } Node p = getParent(this); while (p != null) { Node pp = getParent(p); swap(this, p, pp); p = pp; } // remove root deleteMin(); o_c = null; y_s = null; } } @SuppressWarnings("unchecked") private void fixup(Node n) { if (comparator == null) { Node p = getParent(n); while (p != null) { if (((Comparable) n.key).compareTo(p.key) >= 0) { break; } Node pp = getParent(p); swap(n, p, pp); p = pp; } } else { Node p = getParent(n); while (p != null) { if (comparator.compare(n.key, p.key) >= 0) { break; } Node pp = getParent(p); swap(n, p, pp); p = pp; } } } @SuppressWarnings("unchecked") private void fixdown(Node n) { if (comparator == null) { Node p = getParent(n); while (n.o_c != null) { Node child = n.o_c; if (child.y_s != n && ((Comparable) child.y_s.key).compareTo(child.key) < 0) { child = child.y_s; } if (((Comparable) n.key).compareTo(child.key) <= 0) { break; } swap(child, n, p); p = child; } } else { Node p = getParent(n); while (n.o_c != null) { Node child = n.o_c; if (child.y_s != n && comparator.compare(child.y_s.key, child.key) < 0) { child = child.y_s; } if (comparator.compare(n.key, child.key) <= 0) { break; } swap(child, n, p); p = child; } } } /* * Get the parent node of a given node. */ private Node getParent(Node n) { if (n.y_s == null) { return null; } Node c = n.y_s; if (c.o_c == n) { return c; } Node p1 = c.y_s; if (p1 != null && p1.o_c == n) { return p1; } return c; } /* * Start at the root and traverse the tree in order to find the parent node * of a particular node. Uses the bit representation to keep the cost * log(n). * * @param node the node number assuming that the root node is number one */ private Node findParentNode(long node) { // assert node > 0; // find bit representation of node long[] s = { node }; BitSet bits = BitSet.valueOf(s); // traverse path to last node Node cur = root; for (int i = bits.length() - 2; i > 0; i--) { if (bits.get(i)) { cur = cur.o_c.y_s; } else { cur = cur.o_c; } } return cur; } /* * Swap a node with its parent which must be the root. */ private void swap(Node n, Node root) { // assert this.root == root; Node nLeftChild = n.o_c; if (root.o_c == n) { if (n.y_s == root) { // n is left child and no right sibling n.o_c = root; root.y_s = n; } else { // n is left child and has right sibling root.y_s = n.y_s; root.y_s.y_s = n; n.o_c = root; } } else { // n is right child root.o_c.y_s = root; n.o_c = root.o_c; root.y_s = n; } n.y_s = null; // hang children root.o_c = nLeftChild; if (nLeftChild != null) { if (nLeftChild.y_s == n) { nLeftChild.y_s = root; } else { nLeftChild.y_s.y_s = root; } } this.root = n; } /* * Swap a node with its parent * * @param n the node * * @param p the parent node * * @param pp the parent of the parent node, maybe null */ private void swap(Node n, Node p, Node pp) { if (pp == null) { swap(n, p); return; } Node nLeftChild = n.o_c; if (pp.o_c == p) { // p left child of pp if (p.o_c == n) { if (n.y_s == p) { // n left child of p and no sibling pp.o_c = n; n.y_s = p.y_s; n.o_c = p; p.y_s = n; } else { // n left child or p and sibling n.y_s.y_s = n; Node tmp = n.y_s; n.y_s = p.y_s; p.y_s = tmp; pp.o_c = n; n.o_c = p; } } else { // n right child of p Node tmp = p.o_c; n.y_s = p.y_s; pp.o_c = n; n.o_c = tmp; tmp.y_s = p; p.y_s = n; } } else { // p right child of pp if (p.o_c == n) { if (n.y_s == p) { // n left child of p and no sibling n.y_s = pp; pp.o_c.y_s = n; n.o_c = p; p.y_s = n; } else { // n left child of p and sibling pp.o_c.y_s = n; p.y_s = n.y_s; n.y_s = pp; n.o_c = p; p.y_s.y_s = n; } } else { // n right child of p pp.o_c.y_s = n; n.y_s = pp; n.o_c = p.o_c; n.o_c.y_s = p; p.y_s = n; } } // hang children p.o_c = nLeftChild; if (nLeftChild != null) { if (nLeftChild.y_s == n) { nLeftChild.y_s = p; } else { nLeftChild.y_s.y_s = p; } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy