org.jheaps.tree.BinaryTreeAddressableHeap Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
/*
* (C) Copyright 2014-2016, by Dimitrios Michail
*
* JHeaps Library
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.jheaps.tree;
import java.io.Serializable;
import java.util.BitSet;
import java.util.Comparator;
import java.util.NoSuchElementException;
import org.jheaps.AddressableHeap;
import org.jheaps.annotations.ConstantTime;
import org.jheaps.annotations.LogarithmicTime;
/**
* An explicit binary tree addressable heap. The heap is sorted according to the
* {@linkplain Comparable natural ordering} of its keys, or by a
* {@link Comparator} provided at heap creation time, depending on which
* constructor is used.
*
*
* The worst-case cost of {@code insert}, {@code deleteMin}, {@code delete} and
* {@code decreaceKey} operations is O(log(n)) and the cost of {@code findMin}
* is O(1).
*
*
* Note that the ordering maintained by a binary heap, like any heap, and
* whether or not an explicit comparator is provided, must be consistent
* with {@code equals} if this heap is to correctly implement the
* {@code Heap} interface. (See {@code Comparable} or {@code Comparator} for a
* precise definition of consistent with equals.) This is so because
* the {@code Heap} interface is defined in terms of the {@code equals}
* operation, but a binary heap performs all key comparisons using its
* {@code compareTo} (or {@code compare}) method, so two keys that are deemed
* equal by this method are, from the standpoint of the binary heap, equal. The
* behavior of a heap is well-defined even if its ordering is
* inconsistent with {@code equals}; it just fails to obey the general contract
* of the {@code Heap} interface.
*
*
* Note that this implementation is not synchronized. If
* multiple threads access a heap concurrently, and at least one of the threads
* modifies the heap structurally, it must be synchronized externally.
* (A structural modification is any operation that adds or deletes one or more
* elements or changing the key of some element.) This is typically accomplished
* by synchronizing on some object that naturally encapsulates the heap.
*
* @param
* the type of keys maintained by this heap
* @param
* the type of values maintained by this heap
*
* @author Dimitrios Michail
*
* @see AddressableHeap
* @see Comparable
* @see Comparator
*/
public class BinaryTreeAddressableHeap implements AddressableHeap, Serializable {
private final static long serialVersionUID = 1;
/**
* The comparator used to maintain order in this heap, or null if it uses
* the natural ordering of its keys.
*
* @serial
*/
private final Comparator super K> comparator;
/**
* Size of the heap
*/
private long size;
/**
* Root node of the heap
*/
private Node root;
/**
* Constructs a new, empty heap, using the natural ordering of its keys.
*
*
* All keys inserted into the heap must implement the {@link Comparable}
* interface. Furthermore, all such keys must be mutually
* comparable: {@code k1.compareTo(k2)} must not throw a
* {@code ClassCastException} for any keys {@code k1} and {@code k2} in the
* heap. If the user attempts to put a key into the heap that violates this
* constraint (for example, the user attempts to put a string key into a
* heap whose keys are integers), the {@code insert(Object key)} call will
* throw a {@code ClassCastException}.
*/
public BinaryTreeAddressableHeap() {
this(null);
}
/**
* Constructs a new, empty heap, ordered according to the given comparator.
*
*
* All keys inserted into the heap must be mutually comparable by
* the given comparator: {@code comparator.compare(k1,
* k2)} must not throw a {@code ClassCastException} for any keys {@code k1}
* and {@code k2} in the heap. If the user attempts to put a key into the
* heap that violates this constraint, the {@code insert(Object key)} call
* will throw a {@code ClassCastException}.
*
* @param comparator
* the comparator that will be used to order this heap. If
* {@code null}, the {@linkplain Comparable natural ordering} of
* the keys will be used.
*/
public BinaryTreeAddressableHeap(Comparator super K> comparator) {
this.comparator = comparator;
this.size = 0;
this.root = null;
}
/**
* {@inheritDoc}
*/
@Override
@LogarithmicTime
public AddressableHeap.Handle insert(K key) {
return insert(key, null);
}
/**
* {@inheritDoc}
*/
@Override
@LogarithmicTime
@SuppressWarnings("unchecked")
public AddressableHeap.Handle insert(K key, V value) {
if (key == null) {
throw new NullPointerException("Null keys not permitted");
}
Node n = new Node(key, value);
// easy special cases
if (size == 0) {
root = n;
size = 1;
return n;
} else if (size == 1) {
int c;
if (comparator == null) {
c = ((Comparable super K>) key).compareTo(root.key);
} else {
c = comparator.compare(key, root.key);
}
if (c < 0) {
n.o_c = root;
root.y_s = n;
root = n;
} else {
root.o_c = n;
n.y_s = root;
}
size = 2;
return n;
}
// find parent of last node and hang
Node p = findParentNode(size + 1);
if (p.o_c == null) {
p.o_c = n;
} else {
p.o_c.y_s = n;
}
n.y_s = p;
// increase size
size++;
// fix priorities
fixup(n);
return n;
}
/**
* {@inheritDoc}
*/
@Override
@ConstantTime
public AddressableHeap.Handle findMin() {
if (size == 0) {
throw new NoSuchElementException();
}
return root;
}
/**
* {@inheritDoc}
*/
@Override
@LogarithmicTime
public AddressableHeap.Handle deleteMin() {
if (size == 0) {
throw new NoSuchElementException();
}
Node oldRoot = root;
// easy special cases
if (size == 1) {
root = null;
size = 0;
return oldRoot;
} else if (size == 2) {
root = root.o_c;
root.o_c = null;
root.y_s = null;
size = 1;
oldRoot.o_c = null;
return oldRoot;
}
// remove last node
Node lastNodeParent = findParentNode(size);
Node lastNode = lastNodeParent.o_c;
if (lastNode.y_s != lastNodeParent) {
Node tmp = lastNode;
lastNode = tmp.y_s;
tmp.y_s = lastNodeParent;
} else {
lastNodeParent.o_c = null;
}
lastNode.y_s = null;
// decrease size
size--;
// place it as root
// (assumes root.o_c exists)
if (root.o_c.y_s == root) {
root.o_c.y_s = lastNode;
} else {
root.o_c.y_s.y_s = lastNode;
}
lastNode.o_c = root.o_c;
root = lastNode;
// fix priorities
fixdown(root);
oldRoot.o_c = null;
return oldRoot;
}
/**
* {@inheritDoc}
*/
@Override
@ConstantTime
public boolean isEmpty() {
return size == 0;
}
/**
* {@inheritDoc}
*/
@Override
@ConstantTime
public long size() {
return size;
}
/**
* {@inheritDoc}
*/
@Override
public Comparator super K> comparator() {
return comparator;
}
/**
* {@inheritDoc}
*/
@Override
@ConstantTime
public void clear() {
root = null;
size = 0;
}
// handle
private class Node implements AddressableHeap.Handle, Serializable {
private final static long serialVersionUID = 1;
K key;
V value;
Node o_c; // older child
Node y_s; // younger sibling or parent
Node(K key, V value) {
this.key = key;
this.value = value;
this.o_c = null;
this.y_s = null;
}
@Override
public K getKey() {
return key;
}
@Override
public V getValue() {
return value;
}
@Override
public void setValue(V value) {
this.value = value;
}
@Override
@LogarithmicTime
@SuppressWarnings("unchecked")
public void decreaseKey(K newKey) {
if (this != root && y_s == null) {
throw new IllegalArgumentException("Invalid handle!");
}
int c;
if (comparator == null) {
c = ((Comparable super K>) newKey).compareTo(key);
} else {
c = comparator.compare(newKey, key);
}
if (c > 0) {
throw new IllegalArgumentException("Keys can only be decreased!");
}
key = newKey;
if (c == 0 || root == this) {
return;
}
fixup(this);
}
@Override
@LogarithmicTime
public void delete() {
if (this != root && y_s == null) {
throw new IllegalArgumentException("Invalid handle!");
}
Node p = getParent(this);
while (p != null) {
Node pp = getParent(p);
swap(this, p, pp);
p = pp;
}
// remove root
deleteMin();
o_c = null;
y_s = null;
}
}
@SuppressWarnings("unchecked")
private void fixup(Node n) {
if (comparator == null) {
Node p = getParent(n);
while (p != null) {
if (((Comparable super K>) n.key).compareTo(p.key) >= 0) {
break;
}
Node pp = getParent(p);
swap(n, p, pp);
p = pp;
}
} else {
Node p = getParent(n);
while (p != null) {
if (comparator.compare(n.key, p.key) >= 0) {
break;
}
Node pp = getParent(p);
swap(n, p, pp);
p = pp;
}
}
}
@SuppressWarnings("unchecked")
private void fixdown(Node n) {
if (comparator == null) {
Node p = getParent(n);
while (n.o_c != null) {
Node child = n.o_c;
if (child.y_s != n && ((Comparable super K>) child.y_s.key).compareTo(child.key) < 0) {
child = child.y_s;
}
if (((Comparable super K>) n.key).compareTo(child.key) <= 0) {
break;
}
swap(child, n, p);
p = child;
}
} else {
Node p = getParent(n);
while (n.o_c != null) {
Node child = n.o_c;
if (child.y_s != n && comparator.compare(child.y_s.key, child.key) < 0) {
child = child.y_s;
}
if (comparator.compare(n.key, child.key) <= 0) {
break;
}
swap(child, n, p);
p = child;
}
}
}
/*
* Get the parent node of a given node.
*/
private Node getParent(Node n) {
if (n.y_s == null) {
return null;
}
Node c = n.y_s;
if (c.o_c == n) {
return c;
}
Node p1 = c.y_s;
if (p1 != null && p1.o_c == n) {
return p1;
}
return c;
}
/*
* Start at the root and traverse the tree in order to find the parent node
* of a particular node. Uses the bit representation to keep the cost
* log(n).
*
* @param node the node number assuming that the root node is number one
*/
private Node findParentNode(long node) {
// assert node > 0;
// find bit representation of node
long[] s = { node };
BitSet bits = BitSet.valueOf(s);
// traverse path to last node
Node cur = root;
for (int i = bits.length() - 2; i > 0; i--) {
if (bits.get(i)) {
cur = cur.o_c.y_s;
} else {
cur = cur.o_c;
}
}
return cur;
}
/*
* Swap a node with its parent which must be the root.
*/
private void swap(Node n, Node root) {
// assert this.root == root;
Node nLeftChild = n.o_c;
if (root.o_c == n) {
if (n.y_s == root) {
// n is left child and no right sibling
n.o_c = root;
root.y_s = n;
} else {
// n is left child and has right sibling
root.y_s = n.y_s;
root.y_s.y_s = n;
n.o_c = root;
}
} else {
// n is right child
root.o_c.y_s = root;
n.o_c = root.o_c;
root.y_s = n;
}
n.y_s = null;
// hang children
root.o_c = nLeftChild;
if (nLeftChild != null) {
if (nLeftChild.y_s == n) {
nLeftChild.y_s = root;
} else {
nLeftChild.y_s.y_s = root;
}
}
this.root = n;
}
/*
* Swap a node with its parent
*
* @param n the node
*
* @param p the parent node
*
* @param pp the parent of the parent node, maybe null
*/
private void swap(Node n, Node p, Node pp) {
if (pp == null) {
swap(n, p);
return;
}
Node nLeftChild = n.o_c;
if (pp.o_c == p) {
// p left child of pp
if (p.o_c == n) {
if (n.y_s == p) {
// n left child of p and no sibling
pp.o_c = n;
n.y_s = p.y_s;
n.o_c = p;
p.y_s = n;
} else {
// n left child or p and sibling
n.y_s.y_s = n;
Node tmp = n.y_s;
n.y_s = p.y_s;
p.y_s = tmp;
pp.o_c = n;
n.o_c = p;
}
} else {
// n right child of p
Node tmp = p.o_c;
n.y_s = p.y_s;
pp.o_c = n;
n.o_c = tmp;
tmp.y_s = p;
p.y_s = n;
}
} else {
// p right child of pp
if (p.o_c == n) {
if (n.y_s == p) {
// n left child of p and no sibling
n.y_s = pp;
pp.o_c.y_s = n;
n.o_c = p;
p.y_s = n;
} else {
// n left child of p and sibling
pp.o_c.y_s = n;
p.y_s = n.y_s;
n.y_s = pp;
n.o_c = p;
p.y_s.y_s = n;
}
} else {
// n right child of p
pp.o_c.y_s = n;
n.y_s = pp;
n.o_c = p.o_c;
n.o_c.y_s = p;
p.y_s = n;
}
}
// hang children
p.o_c = nLeftChild;
if (nLeftChild != null) {
if (nLeftChild.y_s == n) {
nLeftChild.y_s = p;
} else {
nLeftChild.y_s.y_s = p;
}
}
}
}