org.jheaps.tree.LeftistHeap Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
/*
* (C) Copyright 2014-2016, by Dimitrios Michail
*
* JHeaps Library
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.jheaps.tree;
import java.util.Comparator;
import java.util.Deque;
import java.util.LinkedList;
/**
* Leftist heaps. The heap is sorted according to the {@linkplain Comparable
* natural ordering} of its keys, or by a {@link Comparator} provided at heap
* creation time, depending on which constructor is used.
*
*
* Operations {@code insert}, {@code deleteMin}, {@code decreaseKey}, and
* {@code delete} take worst-case O(log(n)). Operation {@code findMin} is
* worst-case O(1).
*
*
* Note that the ordering maintained by this heap, like any heap, and whether or
* not an explicit comparator is provided, must be consistent with
* {@code equals} if this heap is to correctly implement the {@code Heap}
* interface. (See {@code Comparable} or {@code Comparator} for a precise
* definition of consistent with equals.) This is so because the
* {@code Heap} interface is defined in terms of the {@code equals} operation,
* but this heap performs all key comparisons using its {@code compareTo} (or
* {@code compare}) method, so two keys that are deemed equal by this method
* are, from the standpoint of this heap, equal. The behavior of a heap
* is well-defined even if its ordering is inconsistent with
* {@code equals}; it just fails to obey the general contract of the
* {@code Heap} interface.
*
*
* Note that this implementation is not synchronized. If
* multiple threads access a heap concurrently, and at least one of the threads
* modifies the heap structurally, it must be synchronized externally.
* (A structural modification is any operation that adds or deletes one or more
* elements or changing the key of some element.) This is typically accomplished
* by synchronizing on some object that naturally encapsulates the heap.
*
* @param
* the type of keys maintained by this heap
* @param
* the type of values maintained by this heap
*
* @author Dimitrios Michail
*/
public class LeftistHeap extends SkewHeap {
private static final long serialVersionUID = -5948402731186806608L;
/**
* Constructs a new, empty heap, using the natural ordering of its keys.
*
*
* All keys inserted into the heap must implement the {@link Comparable}
* interface. Furthermore, all such keys must be mutually
* comparable: {@code k1.compareTo(k2)} must not throw a
* {@code ClassCastException} for any keys {@code k1} and {@code k2} in the
* heap. If the user attempts to put a key into the heap that violates this
* constraint (for example, the user attempts to put a string key into a
* heap whose keys are integers), the {@code insert(Object key)} call will
* throw a {@code ClassCastException}.
*/
public LeftistHeap() {
this(null);
}
/**
* Constructs a new, empty heap, ordered according to the given comparator.
*
*
* All keys inserted into the heap must be mutually comparable by
* the given comparator: {@code comparator.compare(k1,
* k2)} must not throw a {@code ClassCastException} for any keys {@code k1}
* and {@code k2} in the heap. If the user attempts to put a key into the
* heap that violates this constraint, the {@code insert(Object key)} call
* will throw a {@code ClassCastException}.
*
* @param comparator
* the comparator that will be used to order this heap. If
* {@code null}, the {@linkplain Comparable natural ordering} of
* the keys will be used.
*/
public LeftistHeap(Comparator super K> comparator) {
super(comparator);
}
// ~-----------------------------------------------------------------------
static class LeftistNode extends Node {
private static final long serialVersionUID = 1L;
int npl; // null path length
LeftistNode(LeftistHeap heap, K key, V value) {
super(heap, key, value);
this.npl = 0;
}
}
/**
* Factory method for new node creation
*
* @param key
* the key
* @param value
* the value
* @return the newly created node
*/
protected Node createNode(K key, V value) {
return new LeftistNode(this, key, value);
}
/**
* Swap the children of a node.
*
* @param n
* the node
*/
protected void swapChildren(Node n) {
Node left = n.o_c;
if (left != null) {
Node right = left.y_s;
if (right != n) {
n.o_c = right;
right.y_s = left;
left.y_s = n;
}
}
}
/**
* Top-down union two skew heaps
*
* @param root1
* the root of the first heap
* @param root2
* the root of the right heap
* @return the new root of the merged heap
*/
@Override
@SuppressWarnings("unchecked")
protected Node union(Node root1, Node root2) {
if (root1 == null) {
return root2;
} else if (root2 == null) {
return root1;
}
Node newRoot;
Deque> path = new LinkedList>();
// find initial
int c = ((Comparable super K>) root1.key).compareTo(root2.key);
if (c <= 0) {
newRoot = root1;
root1 = unlinkRightChild(root1);
} else {
newRoot = root2;
root2 = unlinkRightChild(root2);
}
Node cur = newRoot;
path.push((LeftistNode) cur);
// merge
while (root1 != null && root2 != null) {
c = ((Comparable super K>) root1.key).compareTo(root2.key);
if (c <= 0) {
// link as right child of cur
if (cur.o_c == null) {
cur.o_c = root1;
} else {
cur.o_c.y_s = root1;
}
root1.y_s = cur;
cur = root1;
path.push((LeftistNode) cur);
root1 = unlinkRightChild(root1);
} else {
// link as right child of cur
if (cur.o_c == null) {
cur.o_c = root2;
} else {
cur.o_c.y_s = root2;
}
root2.y_s = cur;
cur = root2;
path.push((LeftistNode) cur);
root2 = unlinkRightChild(root2);
}
}
if (root1 != null) {
// link as right child of cur
if (cur.o_c == null) {
cur.o_c = root1;
} else {
cur.o_c.y_s = root1;
}
root1.y_s = cur;
}
if (root2 != null) {
// link as right child of cur
if (cur.o_c == null) {
cur.o_c = root2;
} else {
cur.o_c.y_s = root2;
}
root2.y_s = cur;
}
/*
* Traverse path upwards, update null path length and swap if needed.
*/
while (!path.isEmpty()) {
LeftistNode n = path.pop();
if (n.o_c != null) {
// at least on child
LeftistNode nLeft = (LeftistNode) n.o_c;
int nplLeft = nLeft.npl;
int nplRight = -1;
if (nLeft.y_s != n) {
// two children
LeftistNode nRight = (LeftistNode) nLeft.y_s;
nplRight = nRight.npl;
}
n.npl = 1 + Math.min(nplLeft, nplRight);
if (nplLeft < nplRight) {
// swap
swapChildren(n);
}
} else {
// no children
n.npl = 0;
}
}
return newRoot;
}
/**
* Top-down union of two leftist heaps with comparator.
*
* @param root1
* the root of the first heap
* @param root2
* the root of the right heap
* @return the new root of the merged heap
*/
@Override
protected Node unionWithComparator(Node root1, Node root2) {
if (root1 == null) {
return root2;
} else if (root2 == null) {
return root1;
}
Node newRoot;
Deque> path = new LinkedList>();
// find initial
int c = comparator.compare(root1.key, root2.key);
if (c <= 0) {
newRoot = root1;
root1 = unlinkRightChild(root1);
} else {
newRoot = root2;
root2 = unlinkRightChild(root2);
}
Node cur = newRoot;
path.push((LeftistNode) cur);
// merge
while (root1 != null && root2 != null) {
c = comparator.compare(root1.key, root2.key);
if (c <= 0) {
// link as right child of cur
if (cur.o_c == null) {
cur.o_c = root1;
} else {
cur.o_c.y_s = root1;
}
root1.y_s = cur;
cur = root1;
path.push((LeftistNode) cur);
root1 = unlinkRightChild(root1);
} else {
// link as right child of cur
if (cur.o_c == null) {
cur.o_c = root2;
} else {
cur.o_c.y_s = root2;
}
root2.y_s = cur;
cur = root2;
path.push((LeftistNode) cur);
root2 = unlinkRightChild(root2);
}
}
if (root1 != null) {
// link as right child of cur
if (cur.o_c == null) {
cur.o_c = root1;
} else {
cur.o_c.y_s = root1;
}
root1.y_s = cur;
}
if (root2 != null) {
// link as right child of cur
if (cur.o_c == null) {
cur.o_c = root2;
} else {
cur.o_c.y_s = root2;
}
root2.y_s = cur;
}
/*
* Traverse path upwards, update null path length and swap if needed.
*/
while (!path.isEmpty()) {
LeftistNode n = path.pop();
if (n.o_c != null) {
// at least on child
LeftistNode nLeft = (LeftistNode) n.o_c;
int nplLeft = nLeft.npl;
int nplRight = -1;
if (nLeft.y_s != n) {
// two children
LeftistNode nRight = (LeftistNode) nLeft.y_s;
nplRight = nRight.npl;
}
n.npl = 1 + Math.min(nplLeft, nplRight);
if (nplLeft < nplRight) {
// swap
swapChildren(n);
}
} else {
// no children
n.npl = 0;
}
}
return newRoot;
}
}