All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jheaps.tree.LeftistHeap Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2014-2016, by Dimitrios Michail
 *
 * JHeaps Library
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.jheaps.tree;

import java.util.Comparator;
import java.util.Deque;
import java.util.LinkedList;

/**
 * Leftist heaps. The heap is sorted according to the {@linkplain Comparable
 * natural ordering} of its keys, or by a {@link Comparator} provided at heap
 * creation time, depending on which constructor is used.
 *
 * 

* Operations {@code insert}, {@code deleteMin}, {@code decreaseKey}, and * {@code delete} take worst-case O(log(n)). Operation {@code findMin} is * worst-case O(1). * *

* Note that the ordering maintained by this heap, like any heap, and whether or * not an explicit comparator is provided, must be consistent with * {@code equals} if this heap is to correctly implement the {@code Heap} * interface. (See {@code Comparable} or {@code Comparator} for a precise * definition of consistent with equals.) This is so because the * {@code Heap} interface is defined in terms of the {@code equals} operation, * but this heap performs all key comparisons using its {@code compareTo} (or * {@code compare}) method, so two keys that are deemed equal by this method * are, from the standpoint of this heap, equal. The behavior of a heap * is well-defined even if its ordering is inconsistent with * {@code equals}; it just fails to obey the general contract of the * {@code Heap} interface. * *

* Note that this implementation is not synchronized. If * multiple threads access a heap concurrently, and at least one of the threads * modifies the heap structurally, it must be synchronized externally. * (A structural modification is any operation that adds or deletes one or more * elements or changing the key of some element.) This is typically accomplished * by synchronizing on some object that naturally encapsulates the heap. * * @param * the type of keys maintained by this heap * @param * the type of values maintained by this heap * * @author Dimitrios Michail */ public class LeftistHeap extends SkewHeap { private static final long serialVersionUID = -5948402731186806608L; /** * Constructs a new, empty heap, using the natural ordering of its keys. * *

* All keys inserted into the heap must implement the {@link Comparable} * interface. Furthermore, all such keys must be mutually * comparable: {@code k1.compareTo(k2)} must not throw a * {@code ClassCastException} for any keys {@code k1} and {@code k2} in the * heap. If the user attempts to put a key into the heap that violates this * constraint (for example, the user attempts to put a string key into a * heap whose keys are integers), the {@code insert(Object key)} call will * throw a {@code ClassCastException}. */ public LeftistHeap() { this(null); } /** * Constructs a new, empty heap, ordered according to the given comparator. * *

* All keys inserted into the heap must be mutually comparable by * the given comparator: {@code comparator.compare(k1, * k2)} must not throw a {@code ClassCastException} for any keys {@code k1} * and {@code k2} in the heap. If the user attempts to put a key into the * heap that violates this constraint, the {@code insert(Object key)} call * will throw a {@code ClassCastException}. * * @param comparator * the comparator that will be used to order this heap. If * {@code null}, the {@linkplain Comparable natural ordering} of * the keys will be used. */ public LeftistHeap(Comparator comparator) { super(comparator); } // ~----------------------------------------------------------------------- static class LeftistNode extends Node { private static final long serialVersionUID = 1L; int npl; // null path length LeftistNode(LeftistHeap heap, K key, V value) { super(heap, key, value); this.npl = 0; } } /** * Factory method for new node creation * * @param key * the key * @param value * the value * @return the newly created node */ protected Node createNode(K key, V value) { return new LeftistNode(this, key, value); } /** * Swap the children of a node. * * @param n * the node */ protected void swapChildren(Node n) { Node left = n.o_c; if (left != null) { Node right = left.y_s; if (right != n) { n.o_c = right; right.y_s = left; left.y_s = n; } } } /** * Top-down union two skew heaps * * @param root1 * the root of the first heap * @param root2 * the root of the right heap * @return the new root of the merged heap */ @Override @SuppressWarnings("unchecked") protected Node union(Node root1, Node root2) { if (root1 == null) { return root2; } else if (root2 == null) { return root1; } Node newRoot; Deque> path = new LinkedList>(); // find initial int c = ((Comparable) root1.key).compareTo(root2.key); if (c <= 0) { newRoot = root1; root1 = unlinkRightChild(root1); } else { newRoot = root2; root2 = unlinkRightChild(root2); } Node cur = newRoot; path.push((LeftistNode) cur); // merge while (root1 != null && root2 != null) { c = ((Comparable) root1.key).compareTo(root2.key); if (c <= 0) { // link as right child of cur if (cur.o_c == null) { cur.o_c = root1; } else { cur.o_c.y_s = root1; } root1.y_s = cur; cur = root1; path.push((LeftistNode) cur); root1 = unlinkRightChild(root1); } else { // link as right child of cur if (cur.o_c == null) { cur.o_c = root2; } else { cur.o_c.y_s = root2; } root2.y_s = cur; cur = root2; path.push((LeftistNode) cur); root2 = unlinkRightChild(root2); } } if (root1 != null) { // link as right child of cur if (cur.o_c == null) { cur.o_c = root1; } else { cur.o_c.y_s = root1; } root1.y_s = cur; } if (root2 != null) { // link as right child of cur if (cur.o_c == null) { cur.o_c = root2; } else { cur.o_c.y_s = root2; } root2.y_s = cur; } /* * Traverse path upwards, update null path length and swap if needed. */ while (!path.isEmpty()) { LeftistNode n = path.pop(); if (n.o_c != null) { // at least on child LeftistNode nLeft = (LeftistNode) n.o_c; int nplLeft = nLeft.npl; int nplRight = -1; if (nLeft.y_s != n) { // two children LeftistNode nRight = (LeftistNode) nLeft.y_s; nplRight = nRight.npl; } n.npl = 1 + Math.min(nplLeft, nplRight); if (nplLeft < nplRight) { // swap swapChildren(n); } } else { // no children n.npl = 0; } } return newRoot; } /** * Top-down union of two leftist heaps with comparator. * * @param root1 * the root of the first heap * @param root2 * the root of the right heap * @return the new root of the merged heap */ @Override protected Node unionWithComparator(Node root1, Node root2) { if (root1 == null) { return root2; } else if (root2 == null) { return root1; } Node newRoot; Deque> path = new LinkedList>(); // find initial int c = comparator.compare(root1.key, root2.key); if (c <= 0) { newRoot = root1; root1 = unlinkRightChild(root1); } else { newRoot = root2; root2 = unlinkRightChild(root2); } Node cur = newRoot; path.push((LeftistNode) cur); // merge while (root1 != null && root2 != null) { c = comparator.compare(root1.key, root2.key); if (c <= 0) { // link as right child of cur if (cur.o_c == null) { cur.o_c = root1; } else { cur.o_c.y_s = root1; } root1.y_s = cur; cur = root1; path.push((LeftistNode) cur); root1 = unlinkRightChild(root1); } else { // link as right child of cur if (cur.o_c == null) { cur.o_c = root2; } else { cur.o_c.y_s = root2; } root2.y_s = cur; cur = root2; path.push((LeftistNode) cur); root2 = unlinkRightChild(root2); } } if (root1 != null) { // link as right child of cur if (cur.o_c == null) { cur.o_c = root1; } else { cur.o_c.y_s = root1; } root1.y_s = cur; } if (root2 != null) { // link as right child of cur if (cur.o_c == null) { cur.o_c = root2; } else { cur.o_c.y_s = root2; } root2.y_s = cur; } /* * Traverse path upwards, update null path length and swap if needed. */ while (!path.isEmpty()) { LeftistNode n = path.pop(); if (n.o_c != null) { // at least on child LeftistNode nLeft = (LeftistNode) n.o_c; int nplLeft = nLeft.npl; int nplRight = -1; if (nLeft.y_s != n) { // two children LeftistNode nRight = (LeftistNode) nLeft.y_s; nplRight = nRight.npl; } n.npl = 1 + Math.min(nplLeft, nplRight); if (nplLeft < nplRight) { // swap swapChildren(n); } } else { // no children n.npl = 0; } } return newRoot; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy