All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jheaps.tree.PairingHeap Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2014-2016, by Dimitrios Michail
 *
 * JHeaps Library
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.jheaps.tree;

import java.io.Serializable;
import java.util.Comparator;
import java.util.NoSuchElementException;

import org.jheaps.AddressableHeap;
import org.jheaps.MergeableAddressableHeap;
import org.jheaps.annotations.ConstantTime;
import org.jheaps.annotations.LogarithmicTime;

/**
 * Pairing heaps. The heap is sorted according to the {@linkplain Comparable
 * natural ordering} of its keys, or by a {@link Comparator} provided at heap
 * creation time, depending on which constructor is used.
 *
 * 

* This implementation provides amortized O(log(n)) time cost for the * {@code insert}, {@code deleteMin}, and {@code decreaseKey} operations. * Operation {@code findMin}, is a worst-case O(1) operation. The algorithms are * based on the pairing heap * paper. Pairing heaps are very efficient in practice, especially in * applications requiring the {@code decreaseKey} operation. The operation * {@code meld} is amortized O(log(n)). * *

* All the above bounds, however, assume that the user does not perform * cascading melds on heaps such as: * *

 * d.meld(e);
 * c.meld(d);
 * b.meld(c);
 * a.meld(b);
 * 
* * The above scenario, although efficiently supported by using union-find with * path compression, invalidates the claimed bounds. * *

* Note that the ordering maintained by a pairing heap, like any heap, and * whether or not an explicit comparator is provided, must be consistent * with {@code equals} if this heap is to correctly implement the * {@code AddressableHeap} interface. (See {@code Comparable} or * {@code Comparator} for a precise definition of consistent with * equals.) This is so because the {@code AddressableHeap} interface is * defined in terms of the {@code equals} operation, but a pairing heap performs * all key comparisons using its {@code compareTo} (or {@code compare}) method, * so two keys that are deemed equal by this method are, from the standpoint of * the pairing heap, equal. The behavior of a heap is well-defined even * if its ordering is inconsistent with {@code equals}; it just fails to obey * the general contract of the {@code AddressableHeap} interface. * *

* Note that this implementation is not synchronized. If * multiple threads access a heap concurrently, and at least one of the threads * modifies the heap structurally, it must be synchronized externally. * (A structural modification is any operation that adds or deletes one or more * elements or changing the key of some element.) This is typically accomplished * by synchronizing on some object that naturally encapsulates the heap. * * @param * the type of keys maintained by this heap * @param * the type of values maintained by this heap * * @author Dimitrios Michail * * @see CostlessMeldPairingHeap * @see FibonacciHeap */ public class PairingHeap implements MergeableAddressableHeap, Serializable { private final static long serialVersionUID = 1; /** * The comparator used to maintain order in this heap, or null if it uses * the natural ordering of its keys. * * @serial */ private final Comparator comparator; /** * The root of the pairing heap */ private Node root; /** * Size of the pairing heap */ private long size; /** * Used to reference the current heap or some other pairing heap in case of * melding, so that handles remain valid even after a meld, without having * to iterate over them. * * In order to avoid maintaining a full-fledged union-find data structure, * we disallow a heap to be used in melding more than once. We use however, * path-compression in case of cascading melds, that it, a handle moves from * one heap to another and then another. */ private PairingHeap other; /** * Constructs a new, empty heap, using the natural ordering of its keys. All * keys inserted into the heap must implement the {@link Comparable} * interface. Furthermore, all such keys must be mutually * comparable: {@code k1.compareTo(k2)} must not throw a * {@code ClassCastException} for any keys {@code k1} and {@code k2} in the * heap. If the user attempts to put a key into the heap that violates this * constraint (for example, the user attempts to put a string key into a * heap whose keys are integers), the {@code insert(Object key)} call will * throw a {@code ClassCastException}. */ @ConstantTime public PairingHeap() { this(null); } /** * Constructs a new, empty heap, ordered according to the given comparator. * All keys inserted into the heap must be mutually comparable by * the given comparator: {@code comparator.compare(k1, * k2)} must not throw a {@code ClassCastException} for any keys {@code k1} * and {@code k2} in the heap. If the user attempts to put a key into the * heap that violates this constraint, the {@code insert(Object key)} call * will throw a {@code ClassCastException}. * * @param comparator * the comparator that will be used to order this heap. If * {@code null}, the {@linkplain Comparable natural ordering} of * the keys will be used. */ @ConstantTime public PairingHeap(Comparator comparator) { this.root = null; this.comparator = comparator; this.size = 0; this.other = this; } /** * {@inheritDoc} * * @throws IllegalStateException * if the heap has already been used in the right hand side of a * meld */ @Override @LogarithmicTime(amortized = true) public AddressableHeap.Handle insert(K key, V value) { if (other != this) { throw new IllegalStateException("A heap cannot be used after a meld"); } if (key == null) { throw new NullPointerException("Null keys not permitted"); } Node n = new Node(this, key, value); if (comparator == null) { root = link(root, n); } else { root = linkWithComparator(root, n); } size++; return n; } /** * {@inheritDoc} * * @throws IllegalStateException * if the heap has already been used in the right hand side of a * meld */ @Override @LogarithmicTime(amortized = true) public AddressableHeap.Handle insert(K key) { return insert(key, null); } /** * {@inheritDoc} */ @Override @ConstantTime(amortized = false) public AddressableHeap.Handle findMin() { if (size == 0) { throw new NoSuchElementException(); } return root; } /** * {@inheritDoc} */ @Override @LogarithmicTime(amortized = true) public AddressableHeap.Handle deleteMin() { if (size == 0) { throw new NoSuchElementException(); } // assert root.o_s == null && root.y_s == null; Handle oldRoot = root; // cut all children, combine them and overwrite old root root = combine(cutChildren(root)); // decrease size size--; return oldRoot; } /** * {@inheritDoc} */ @Override @ConstantTime public boolean isEmpty() { return size == 0; } /** * {@inheritDoc} */ @Override @ConstantTime public long size() { return size; } /** * {@inheritDoc} */ @Override public Comparator comparator() { return comparator; } /** * {@inheritDoc} */ @Override @ConstantTime(amortized = false) public void clear() { root = null; size = 0; } /** * {@inheritDoc} */ @Override @LogarithmicTime(amortized = true) public void meld(MergeableAddressableHeap other) { PairingHeap h = (PairingHeap) other; // check same comparator if (comparator != null) { if (h.comparator == null || !h.comparator.equals(comparator)) { throw new IllegalArgumentException("Cannot meld heaps using different comparators!"); } } else if (h.comparator != null) { throw new IllegalArgumentException("Cannot meld heaps using different comparators!"); } if (h.other != h) { throw new IllegalStateException("A heap cannot be used after a meld."); } // perform the meld size += h.size; if (comparator == null) { root = link(root, h.root); } else { root = linkWithComparator(root, h.root); } // clear other h.size = 0; h.root = null; // take ownership h.other = this; } // -------------------------------------------------------------------- static class Node implements AddressableHeap.Handle, Serializable { private final static long serialVersionUID = 1; /* * We maintain explicitly the belonging heap, instead of using an inner * class due to possible cascading melding. */ PairingHeap heap; K key; V value; Node o_c; // older child Node y_s; // younger sibling Node o_s; // older sibling or parent Node(PairingHeap heap, K key, V value) { this.heap = heap; this.key = key; this.value = value; this.o_c = null; this.y_s = null; this.o_s = null; } /** * {@inheritDoc} */ @Override public K getKey() { return key; } /** * {@inheritDoc} */ @Override public V getValue() { return value; } /** * {@inheritDoc} */ @Override public void setValue(V value) { this.value = value; } /** * {@inheritDoc} */ @Override @LogarithmicTime(amortized = true) public void decreaseKey(K newKey) { getOwner().decreaseKey(this, newKey); } /** * {@inheritDoc} */ @Override @LogarithmicTime(amortized = true) public void delete() { getOwner().delete(this); } /* * Get the owner heap of the handle. This is union-find with * path-compression between heaps. */ PairingHeap getOwner() { if (heap.other != heap) { // find root PairingHeap root = heap; while (root != root.other) { root = root.other; } // path-compression PairingHeap cur = heap; while (cur.other != root) { PairingHeap next = cur.other; cur.other = root; cur = next; } heap = root; } return heap; } } /** * Decrease the key of a node. * * @param n * the node * @param newKey * the new key */ @SuppressWarnings("unchecked") private void decreaseKey(Node n, K newKey) { int c; if (comparator == null) { c = ((Comparable) newKey).compareTo(n.key); } else { c = comparator.compare(newKey, n.key); } if (c > 0) { throw new IllegalArgumentException("Keys can only be decreased!"); } n.key = newKey; if (c == 0 || root == n) { return; } if (n.o_s == null) { throw new IllegalArgumentException("Invalid handle!"); } // unlink from parent if (n.y_s != null) { n.y_s.o_s = n.o_s; } if (n.o_s.o_c == n) { // I am the oldest :( n.o_s.o_c = n.y_s; } else { // I have an older sibling! n.o_s.y_s = n.y_s; } n.y_s = null; n.o_s = null; // merge with root if (comparator == null) { root = link(root, n); } else { root = linkWithComparator(root, n); } } /* * Delete a node */ private void delete(Node n) { if (root == n) { deleteMin(); n.o_c = null; n.y_s = null; n.o_s = null; return; } if (n.o_s == null) { throw new IllegalArgumentException("Invalid handle!"); } // unlink from parent if (n.y_s != null) { n.y_s.o_s = n.o_s; } if (n.o_s.o_c == n) { // I am the oldest :( n.o_s.o_c = n.y_s; } else { // I have an older sibling! n.o_s.y_s = n.y_s; } n.y_s = null; n.o_s = null; // perform delete-min at tree rooted at this Node t = combine(cutChildren(n)); // and merge with other cut tree if (comparator == null) { root = link(root, t); } else { root = linkWithComparator(root, t); } size--; } /* * Two pass pair and compute root. */ private Node combine(Node l) { if (l == null) { return null; } assert l.o_s == null; // left-right pass Node pairs = null; Node it = l, p_it; if (comparator == null) { // no comparator while (it != null) { p_it = it; it = it.y_s; if (it == null) { // append last node to pair list p_it.y_s = pairs; p_it.o_s = null; pairs = p_it; } else { Node n_it = it.y_s; // disconnect both p_it.y_s = null; p_it.o_s = null; it.y_s = null; it.o_s = null; // link trees p_it = link(p_it, it); // append to pair list p_it.y_s = pairs; pairs = p_it; // advance it = n_it; } } } else { while (it != null) { p_it = it; it = it.y_s; if (it == null) { // append last node to pair list p_it.y_s = pairs; p_it.o_s = null; pairs = p_it; } else { Node n_it = it.y_s; // disconnect both p_it.y_s = null; p_it.o_s = null; it.y_s = null; it.o_s = null; // link trees p_it = linkWithComparator(p_it, it); // append to pair list p_it.y_s = pairs; pairs = p_it; // advance it = n_it; } } } // second pass (reverse order - due to add first) it = pairs; Node f = null; if (comparator == null) { while (it != null) { Node nextIt = it.y_s; it.y_s = null; f = link(f, it); it = nextIt; } } else { while (it != null) { Node nextIt = it.y_s; it.y_s = null; f = linkWithComparator(f, it); it = nextIt; } } return f; } /** * Cut the children of a node and return the list. * * @param n * the node * @return the first node in the children list */ private Node cutChildren(Node n) { Node child = n.o_c; n.o_c = null; if (child != null) { child.o_s = null; } return child; } @SuppressWarnings("unchecked") private Node link(Node f, Node s) { if (s == null) { return f; } else if (f == null) { return s; } else if (((Comparable) f.key).compareTo(s.key) <= 0) { s.y_s = f.o_c; s.o_s = f; if (f.o_c != null) { f.o_c.o_s = s; } f.o_c = s; return f; } else { return link(s, f); } } private Node linkWithComparator(Node f, Node s) { if (s == null) { return f; } else if (f == null) { return s; } else if (comparator.compare(f.key, s.key) <= 0) { s.y_s = f.o_c; s.o_s = f; if (f.o_c != null) { f.o_c.o_s = s; } f.o_c = s; return f; } else { return linkWithComparator(s, f); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy