org.jheaps.tree.ReflectedHeap Maven / Gradle / Ivy
Show all versions of AptSpringProcessor Show documentation
/*
* (C) Copyright 2014-2016, by Dimitrios Michail
*
* JHeaps Library
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.jheaps.tree;
import java.io.Serializable;
import java.util.Collections;
import java.util.Comparator;
import java.util.NoSuchElementException;
import org.jheaps.AddressableHeap;
import org.jheaps.AddressableHeapFactory;
import org.jheaps.MergeableAddressableHeap;
import org.jheaps.MergeableDoubleEndedAddressableHeap;
/**
* Reflected double ended heaps. The heap is sorted according to the
* {@linkplain Comparable natural ordering} of its keys, or by a
* {@link Comparator} provided at heap creation time, depending on which
* constructor is used.
*
*
* This class implements a general technique which uses two
* {@link MergeableAddressableHeap}s to implement a double ended heap, described
* in detail in the following
* paper:
*
* - C. Makris, A. Tsakalidis, and K. Tsichlas. Reflected min-max heaps.
* Information Processing Letters, 86(4), 209--214, 2003.
*
*
*
* The running time bounds depend on the implementation of the underlying used
* heap. All the above bounds, however, assume that the user does not perform
* cascading melds on heaps such as:
*
*
* d.meld(e);
* c.meld(d);
* b.meld(c);
* a.meld(b);
*
*
* The above scenario, although efficiently supported by using union-find with
* path compression, invalidates the claimed bounds.
*
*
* Note that the ordering maintained by a this heap, like any heap, and whether
* or not an explicit comparator is provided, must be consistent with
* {@code equals} if this heap is to correctly implement the
* {@code AddressableHeap} interface. (See {@code Comparable} or
* {@code Comparator} for a precise definition of consistent with
* equals.) This is so because the {@code AddressableHeap} interface is
* defined in terms of the {@code equals} operation, but this heap performs all
* key comparisons using its {@code compareTo} (or {@code compare}) method, so
* two keys that are deemed equal by this method are, from the standpoint of
* this heap, equal. The behavior of a heap is well-defined even if its
* ordering is inconsistent with {@code equals}; it just fails to obey the
* general contract of the {@code AddressableHeap} interface.
*
*
* Note that this implementation is not synchronized. If
* multiple threads access a heap concurrently, and at least one of the threads
* modifies the heap structurally, it must be synchronized externally.
* (A structural modification is any operation that adds or deletes one or more
* elements or changing the key of some element.) This is typically accomplished
* by synchronizing on some object that naturally encapsulates the heap.
*
* @param
* the type of keys maintained by this heap
* @param
* the type of values maintained by this heap
*
* @author Dimitrios Michail
*/
public class ReflectedHeap implements MergeableDoubleEndedAddressableHeap, Serializable {
private static final long serialVersionUID = -5428954082047233961L;
/**
* The comparator used to maintain order in this heap, or null if it uses
* the natural ordering of its keys.
*
* @serial
*/
private final Comparator super K> comparator;
/**
* A minimum heap
*/
private final AddressableHeap> minHeap;
/**
* A maximum heap
*/
private final AddressableHeap> maxHeap;
/**
* A free element in case the size is odd
*/
private ReflectedHandle free;
/**
* Size of the heap
*/
private long size;
/**
* Used to reference the current heap or some other heap in case of melding,
* so that handles remain valid even after a meld, without having to iterate
* over them.
*
* In order to avoid maintaining a full-fledged union-find data structure,
* we disallow a heap to be used in melding more than once. We use however,
* path-compression in case of cascading melds, that it, a handle moves from
* one heap to another and then another.
*/
private ReflectedHeap other;
/**
* Constructs a new, empty heap, using the natural ordering of its keys. All
* keys inserted into the heap must implement the {@link Comparable}
* interface. Furthermore, all such keys must be mutually
* comparable: {@code k1.compareTo(k2)} must not throw a
* {@code ClassCastException} for any keys {@code k1} and {@code k2} in the
* heap. If the user attempts to put a key into the heap that violates this
* constraint (for example, the user attempts to put a string key into a
* heap whose keys are integers), the {@code insert(Object key)} call will
* throw a {@code ClassCastException}.
*
* @param heapFactory
* a factory for the underlying heap implementation
* @throws NullPointerException
* if the heap factory is null
*/
public ReflectedHeap(AddressableHeapFactory heapFactory) {
this(heapFactory, null);
}
/**
* Constructs a new, empty heap, ordered according to the given comparator.
* All keys inserted into the heap must be mutually comparable by
* the given comparator: {@code comparator.compare(k1,
* k2)} must not throw a {@code ClassCastException} for any keys {@code k1}
* and {@code k2} in the heap. If the user attempts to put a key into the
* heap that violates this constraint, the {@code insert(Object key)} call
* will throw a {@code ClassCastException}.
*
* @param heapFactory
* a factory for the underlying heap implementation
* @param comparator
* the comparator that will be used to order this heap. If
* {@code null}, the {@linkplain Comparable natural ordering} of
* the keys will be used.
*
* @throws NullPointerException
* if the heap factory is null
*/
@SuppressWarnings("unchecked")
public ReflectedHeap(AddressableHeapFactory heapFactory, Comparator super K> comparator) {
if (heapFactory == null) {
throw new NullPointerException("Underlying heap factory cannot be null");
}
this.comparator = comparator;
this.minHeap = (AddressableHeap>) heapFactory.get(comparator);
this.maxHeap = (AddressableHeap>) heapFactory.get(Collections.reverseOrder(comparator));
this.free = null;
this.size = 0;
this.other = this;
}
/**
* {@inheritDoc}
*/
@Override
public Comparator super K> comparator() {
return comparator;
}
/**
* {@inheritDoc}
*/
@Override
public boolean isEmpty() {
return size == 0;
}
/**
* {@inheritDoc}
*/
@Override
public long size() {
return size;
}
/**
* {@inheritDoc}
*/
@Override
public void clear() {
size = 0;
free = null;
minHeap.clear();
maxHeap.clear();
}
/**
* {@inheritDoc}
*/
@Override
public Handle insert(K key, V value) {
if (key == null) {
throw new NullPointerException("Null keys not permitted");
} else if (other != this) {
throw new IllegalStateException("A heap cannot be used after a meld");
} else if (size % 2 == 0) {
free = new ReflectedHandle(this, key, value);
size++;
return free;
} else {
ReflectedHandle newHandle = new ReflectedHandle(this, key, value);
insertPair(newHandle, free);
free = null;
size++;
return newHandle;
}
}
/**
* {@inheritDoc}
*/
@Override
public Handle insert(K key) {
return insert(key, null);
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
public Handle findMin() {
if (size == 0) {
throw new NoSuchElementException();
} else if (size == 1) {
return free;
} else if (size % 2 == 0) {
return minHeap.findMin().getValue().outer;
} else {
AddressableHeap.Handle> minInnerHandle = minHeap.findMin();
int c;
if (comparator == null) {
c = ((Comparable super K>) minInnerHandle.getKey()).compareTo(free.key);
} else {
c = comparator.compare(minInnerHandle.getKey(), free.key);
}
if (c < 0) {
return minInnerHandle.getValue().outer;
} else {
return free;
}
}
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
public Handle findMax() {
if (size == 0) {
throw new NoSuchElementException();
} else if (size == 1) {
return free;
} else if (size % 2 == 0) {
return maxHeap.findMin().getValue().outer;
} else {
AddressableHeap.Handle> maxInnerHandle = maxHeap.findMin();
int c;
if (comparator == null) {
c = ((Comparable super K>) maxInnerHandle.getKey()).compareTo(free.key);
} else {
c = comparator.compare(maxInnerHandle.getKey(), free.key);
}
if (c > 0) {
return maxInnerHandle.getValue().outer;
} else {
return free;
}
}
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
public Handle deleteMin() {
if (size == 0) {
throw new NoSuchElementException();
} else if (size == 1) {
Handle min = free;
free = null;
size--;
return min;
} else if (size % 2 == 0) {
// find min
AddressableHeap.Handle> minInner = minHeap.deleteMin();
ReflectedHandle minOuter = minInner.getValue().outer;
minOuter.inner = null;
minOuter.minNotMax = false;
// delete max and keep as free
AddressableHeap.Handle> maxInner = minInner.getValue().otherInner;
ReflectedHandle maxOuter = maxInner.getValue().outer;
maxInner.delete();
maxOuter.inner = null;
maxOuter.minNotMax = false;
free = maxOuter;
size--;
return minOuter;
} else {
// find min
AddressableHeap.Handle> minInner = minHeap.findMin();
int c;
if (comparator == null) {
c = ((Comparable super K>) minInner.getKey()).compareTo(free.key);
} else {
c = comparator.compare(minInner.getKey(), free.key);
}
if (c >= 0) {
Handle min = free;
free = null;
size--;
return min;
}
// minInner is smaller
minInner.delete();
ReflectedHandle minOuter = minInner.getValue().outer;
minOuter.inner = null;
minOuter.minNotMax = false;
// delete max
AddressableHeap.Handle> maxInner = minInner.getValue().otherInner;
ReflectedHandle maxOuter = maxInner.getValue().outer;
maxInner.delete();
maxOuter.inner = null;
maxOuter.minNotMax = false;
// reinsert max with free
insertPair(maxOuter, free);
free = null;
size--;
return minOuter;
}
}
/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
public Handle deleteMax() {
if (size == 0) {
throw new NoSuchElementException();
} else if (size == 1) {
Handle max = free;
free = null;
size--;
return max;
} else if (size % 2 == 0) {
// find max
AddressableHeap.Handle> maxInner = maxHeap.deleteMin();
ReflectedHandle maxOuter = maxInner.getValue().outer;
maxOuter.inner = null;
maxOuter.minNotMax = false;
// delete min and keep as free
AddressableHeap.Handle> minInner = maxInner.getValue().otherInner;
ReflectedHandle minOuter = minInner.getValue().outer;
minInner.delete();
minOuter.inner = null;
minOuter.minNotMax = false;
free = minOuter;
size--;
return maxOuter;
} else {
// find max
AddressableHeap.Handle> maxInner = maxHeap.findMin();
int c;
if (comparator == null) {
c = ((Comparable super K>) maxInner.getKey()).compareTo(free.key);
} else {
c = comparator.compare(maxInner.getKey(), free.key);
}
if (c < 0) {
Handle max = free;
free = null;
size--;
return max;
}
// maxInner is larger
maxInner.delete();
ReflectedHandle maxOuter = maxInner.getValue().outer;
maxOuter.inner = null;
maxOuter.minNotMax = false;
// delete min
AddressableHeap.Handle> minInner = maxInner.getValue().otherInner;
ReflectedHandle minOuter = minInner.getValue().outer;
minInner.delete();
minOuter.inner = null;
minOuter.minNotMax = false;
// reinsert min with free
insertPair(minOuter, free);
free = null;
size--;
return maxOuter;
}
}
/**
* {@inheritDoc}
*/
@SuppressWarnings("unchecked")
@Override
public void meld(MergeableDoubleEndedAddressableHeap other) {
ReflectedHeap h = (ReflectedHeap) other;
// check same comparator
if (comparator != null) {
if (h.comparator == null || !h.comparator.equals(comparator)) {
throw new IllegalArgumentException("Cannot meld heaps using different comparators!");
}
} else if (h.comparator != null) {
throw new IllegalArgumentException("Cannot meld heaps using different comparators!");
}
if (h.other != h) {
throw new IllegalStateException("A heap cannot be used after a meld.");
}
if (!(minHeap instanceof MergeableAddressableHeap)) {
throw new IllegalArgumentException("Underlying heaps are not meldable.");
}
// meld min heaps
MergeableAddressableHeap minAsMergeableHeap = (MergeableAddressableHeap) minHeap;
MergeableAddressableHeap hMinAsMergeableHeap = (MergeableAddressableHeap) h.minHeap;
minAsMergeableHeap.meld(hMinAsMergeableHeap);
// meld max heaps
MergeableAddressableHeap maxAsMergeableHeap = (MergeableAddressableHeap) maxHeap;
MergeableAddressableHeap hMaxAsMergeableHeap = (MergeableAddressableHeap) h.maxHeap;
maxAsMergeableHeap.meld(hMaxAsMergeableHeap);
// meld free
if (free == null) {
if (h.free != null) {
free = h.free;
h.free = null;
}
} else {
if (h.free != null) {
insertPair(free, h.free);
h.free = null;
free = null;
}
}
// set new sizes
size += h.size;
h.size = 0;
// take ownership
h.other = this;
}
/**
* Insert a pair of elements, one in the min heap and one in the max heap.
*
* @param handle1
* a handle to the first element
* @param handle2
* a handle to the second element
*/
@SuppressWarnings("unchecked")
private void insertPair(ReflectedHandle handle1, ReflectedHandle handle2) {
int c;
if (comparator == null) {
c = ((Comparable super K>) handle1.key).compareTo(handle2.key);
} else {
c = comparator.compare(handle1.key, handle2.key);
}
AddressableHeap.Handle> innerHandle1;
AddressableHeap.Handle> innerHandle2;
if (c <= 0) {
innerHandle1 = minHeap.insert(handle1.key);
handle1.minNotMax = true;
innerHandle2 = maxHeap.insert(handle2.key);
handle2.minNotMax = false;
} else {
innerHandle1 = maxHeap.insert(handle1.key);
handle1.minNotMax = false;
innerHandle2 = minHeap.insert(handle2.key);
handle2.minNotMax = true;
}
handle1.inner = innerHandle1;
handle2.inner = innerHandle2;
innerHandle1.setValue(new HandleMap(handle1, innerHandle2));
innerHandle2.setValue(new HandleMap(handle2, innerHandle1));
}
/**
* Delete an element
*
* @param n
* a handle to the element
*/
private void delete(ReflectedHandle n) {
if (n.inner == null && free != n) {
throw new IllegalArgumentException("Invalid handle!");
}
if (free == n) {
free = null;
} else {
// delete from inner queue
AddressableHeap.Handle> nInner = n.inner;
ReflectedHandle nOuter = nInner.getValue().outer;
nInner.delete();
nOuter.inner = null;
nOuter.minNotMax = false;
// delete pair from inner queue
AddressableHeap.Handle> otherInner = nInner.getValue().otherInner;
ReflectedHandle otherOuter = otherInner.getValue().outer;
otherInner.delete();
otherOuter.inner = null;
otherOuter.minNotMax = false;
// reinsert either as free or as pair with free
if (free == null) {
free = otherOuter;
} else {
insertPair(otherOuter, free);
free = null;
}
}
size--;
}
/**
* Decrease the key of an element.
*
* @param n
* the element
* @param newKey
* the new key
*/
@SuppressWarnings("unchecked")
private void decreaseKey(ReflectedHandle n, K newKey) {
if (n.inner == null && free != n) {
throw new IllegalArgumentException("Invalid handle!");
}
int c;
if (comparator == null) {
c = ((Comparable super K>) newKey).compareTo(n.key);
} else {
c = comparator.compare(newKey, n.key);
}
if (c > 0) {
throw new IllegalArgumentException("Keys can only be decreased!");
}
n.key = newKey;
if (c == 0 || free == n) {
return;
}
// actual decrease
AddressableHeap.Handle> nInner = n.inner;
if (n.minNotMax) {
// we are in the min heap, easy case
n.inner.decreaseKey(newKey);
} else {
// we are in the max heap, remove
nInner.delete();
ReflectedHandle nOuter = nInner.getValue().outer;
nOuter.inner = null;
nOuter.minNotMax = false;
// remove min
AddressableHeap.Handle> minInner = nInner.getValue().otherInner;
ReflectedHandle minOuter = minInner.getValue().outer;
minInner.delete();
minOuter.inner = null;
minOuter.minNotMax = false;
// update key
nOuter.key = newKey;
// reinsert both
insertPair(nOuter, minOuter);
}
}
/**
* Increase the key of an element.
*
* @param n
* the element
* @param newKey
* the new key
*/
@SuppressWarnings("unchecked")
private void increaseKey(ReflectedHandle n, K newKey) {
if (n.inner == null && free != n) {
throw new IllegalArgumentException("Invalid handle!");
}
int c;
if (comparator == null) {
c = ((Comparable super K>) newKey).compareTo(n.key);
} else {
c = comparator.compare(newKey, n.key);
}
if (c < 0) {
throw new IllegalArgumentException("Keys can only be increased!");
}
n.key = newKey;
if (c == 0 || free == n) {
return;
}
// actual increase
AddressableHeap.Handle> nInner = n.inner;
if (!n.minNotMax) {
// we are in the max heap, easy case
n.inner.decreaseKey(newKey);
} else {
// we are in the min heap, remove
nInner.delete();
ReflectedHandle nOuter = nInner.getValue().outer;
nOuter.inner = null;
nOuter.minNotMax = false;
// remove max
AddressableHeap.Handle> maxInner = nInner.getValue().otherInner;
ReflectedHandle maxOuter = maxInner.getValue().outer;
maxInner.delete();
maxOuter.inner = null;
maxOuter.minNotMax = false;
// update key
nOuter.key = newKey;
// reinsert both
insertPair(nOuter, maxOuter);
}
}
// ~-------------------------------------------------------------------
/*
* This is the outer handle which we provide to the users.
*/
private static class ReflectedHandle implements Handle, Serializable {
private static final long serialVersionUID = 3179286196684064903L;
/*
* We maintain explicitly the belonging heap, instead of using an inner
* class due to possible cascading melding.
*/
ReflectedHeap heap;
K key;
V value;
/*
* Whether the key is inside the minimum or the maximum heap (if not the
* free element).
*/
boolean minNotMax;
/*
* Handle inside one of the inner heaps, or null if free element.
*/
AddressableHeap.Handle> inner;
public ReflectedHandle(ReflectedHeap heap, K key, V value) {
this.heap = heap;
this.key = key;
this.value = value;
}
/**
* {@inheritDoc}
*/
@Override
public K getKey() {
return key;
}
/**
* {@inheritDoc}
*/
@Override
public V getValue() {
return value;
}
/**
* {@inheritDoc}
*/
@Override
public void setValue(V value) {
this.value = value;
}
/**
* {@inheritDoc}
*/
@Override
public void decreaseKey(K newKey) {
getOwner().decreaseKey(this, newKey);
}
/**
* {@inheritDoc}
*/
@Override
public void delete() {
getOwner().delete(this);
}
/**
* {@inheritDoc}
*/
@Override
public void increaseKey(K newKey) {
getOwner().increaseKey(this, newKey);
}
/*
* Get the owner heap of the handle. This is union-find with
* path-compression between heaps.
*/
ReflectedHeap getOwner() {
if (heap.other != heap) {
// find root
ReflectedHeap root = heap;
while (root != root.other) {
root = root.other;
}
// path-compression
ReflectedHeap cur = heap;
while (cur.other != root) {
ReflectedHeap next = cur.other;
cur.other = root;
cur = next;
}
heap = root;
}
return heap;
}
}
/*
* Value kept in the inner heaps, in order to map (a) to the outer heap and
* (b) to the pair inside the other inner heap.
*/
private static class HandleMap implements Serializable {
private static final long serialVersionUID = 1L;
ReflectedHandle outer;
AddressableHeap.Handle> otherInner;
public HandleMap(ReflectedHandle outer, AddressableHeap.Handle> otherInner) {
this.outer = outer;
this.otherInner = otherInner;
}
}
}