All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jheaps.tree.SkewHeap Maven / Gradle / Ivy

Go to download

This project contains the apt processor that implements all the checks enumerated in @Verify. It is a self contained, and shaded jar.

The newest version!
/*
 * (C) Copyright 2014-2016, by Dimitrios Michail
 *
 * JHeaps Library
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.jheaps.tree;

import java.io.Serializable;
import java.util.Comparator;
import java.util.NoSuchElementException;

import org.jheaps.AddressableHeap;
import org.jheaps.MergeableAddressableHeap;
import org.jheaps.annotations.ConstantTime;
import org.jheaps.annotations.LogarithmicTime;

/**
 * Skew heaps. The heap is sorted according to the {@linkplain Comparable
 * natural ordering} of its keys, or by a {@link Comparator} provided at heap
 * creation time, depending on which constructor is used.
 *
 * 

* Operations {@code insert}, {@code deleteMin}, and {@code delete} take * amortized O(log(n)). Operation {@code findMin} is worst-case O(1). Note that * a skew-heap does not efficiently support the operation {@code decreaseKey} * which is amortized Ω(log(n)). * *

* Note that the ordering maintained by this heap, like any heap, and whether or * not an explicit comparator is provided, must be consistent with * {@code equals} if this heap is to correctly implement the {@code Heap} * interface. (See {@code Comparable} or {@code Comparator} for a precise * definition of consistent with equals.) This is so because the * {@code Heap} interface is defined in terms of the {@code equals} operation, * but this heap performs all key comparisons using its {@code compareTo} (or * {@code compare}) method, so two keys that are deemed equal by this method * are, from the standpoint of this heap, equal. The behavior of a heap * is well-defined even if its ordering is inconsistent with * {@code equals}; it just fails to obey the general contract of the * {@code Heap} interface. * *

* Note that this implementation is not synchronized. If * multiple threads access a heap concurrently, and at least one of the threads * modifies the heap structurally, it must be synchronized externally. * (A structural modification is any operation that adds or deletes one or more * elements or changing the key of some element.) This is typically accomplished * by synchronizing on some object that naturally encapsulates the heap. * * @param * the type of keys maintained by this heap * @param * the type of values maintained by this heap * * @author Dimitrios Michail */ public class SkewHeap implements MergeableAddressableHeap, Serializable { private final static long serialVersionUID = 1; /** * The comparator used to maintain order in this heap, or null if it uses * the natural ordering of its keys. * * @serial */ protected final Comparator comparator; /** * Size of the heap */ protected long size; /** * Root node of the heap */ protected Node root; /** * Used to reference the current heap or some other heap in case of melding, * so that handles remain valid even after a meld, without having to iterate * over them. * * In order to avoid maintaining a full-fledged union-find data structure, * we disallow a heap to be used in melding more than once. We use however, * path-compression in case of cascading melds, that it, a handle moves from * one heap to another and then another. */ protected SkewHeap other; /** * Constructs a new, empty heap, using the natural ordering of its keys. * *

* All keys inserted into the heap must implement the {@link Comparable} * interface. Furthermore, all such keys must be mutually * comparable: {@code k1.compareTo(k2)} must not throw a * {@code ClassCastException} for any keys {@code k1} and {@code k2} in the * heap. If the user attempts to put a key into the heap that violates this * constraint (for example, the user attempts to put a string key into a * heap whose keys are integers), the {@code insert(Object key)} call will * throw a {@code ClassCastException}. */ public SkewHeap() { this(null); } /** * Constructs a new, empty heap, ordered according to the given comparator. * *

* All keys inserted into the heap must be mutually comparable by * the given comparator: {@code comparator.compare(k1, * k2)} must not throw a {@code ClassCastException} for any keys {@code k1} * and {@code k2} in the heap. If the user attempts to put a key into the * heap that violates this constraint, the {@code insert(Object key)} call * will throw a {@code ClassCastException}. * * @param comparator * the comparator that will be used to order this heap. If * {@code null}, the {@linkplain Comparable natural ordering} of * the keys will be used. */ public SkewHeap(Comparator comparator) { this.comparator = comparator; this.size = 0; this.root = null; this.other = this; } /** * {@inheritDoc} */ @Override @LogarithmicTime(amortized = true) public AddressableHeap.Handle insert(K key) { return insert(key, null); } /** * {@inheritDoc} */ @Override @LogarithmicTime(amortized = true) @SuppressWarnings("unchecked") public AddressableHeap.Handle insert(K key, V value) { if (other != this) { throw new IllegalStateException("A heap cannot be used after a meld"); } if (key == null) { throw new NullPointerException("Null keys not permitted"); } Node n = createNode(key, value); // easy special cases if (size == 0) { root = n; size = 1; return n; } else if (size == 1) { int c; if (comparator == null) { c = ((Comparable) key).compareTo(root.key); } else { c = comparator.compare(key, root.key); } if (c <= 0) { n.o_c = root; root.y_s = n; root = n; } else { root.o_c = n; n.y_s = root; } size = 2; return n; } if (comparator == null) { root = union(root, n); } else { root = unionWithComparator(root, n); } size++; return n; } /** * {@inheritDoc} */ @Override @ConstantTime public AddressableHeap.Handle findMin() { if (size == 0) { throw new NoSuchElementException(); } return root; } /** * {@inheritDoc} */ @Override @LogarithmicTime(amortized = true) public Handle deleteMin() { if (size == 0) { throw new NoSuchElementException(); } Node oldRoot = root; // easy special cases if (size == 1) { root = null; size = 0; return oldRoot; } else if (size == 2) { root = root.o_c; root.o_c = null; root.y_s = null; size = 1; oldRoot.o_c = null; return oldRoot; } root = unlinkAndUnionChildren(root); size--; return oldRoot; } /** * {@inheritDoc} */ @Override @ConstantTime public boolean isEmpty() { return size == 0; } /** * {@inheritDoc} */ @Override @ConstantTime public long size() { return size; } /** * {@inheritDoc} */ @Override public Comparator comparator() { return comparator; } /** * {@inheritDoc} */ @Override @ConstantTime public void clear() { root = null; size = 0; } @Override public void meld(MergeableAddressableHeap other) { SkewHeap h = (SkewHeap) other; // check same comparator if (comparator != null) { if (h.comparator == null || !h.comparator.equals(comparator)) { throw new IllegalArgumentException("Cannot meld heaps using different comparators!"); } } else if (h.comparator != null) { throw new IllegalArgumentException("Cannot meld heaps using different comparators!"); } if (h.other != h) { throw new IllegalStateException("A heap cannot be used after a meld."); } // perform the meld size += h.size; if (comparator == null) { root = union(root, h.root); } else { root = unionWithComparator(root, h.root); } // clear other h.size = 0; h.root = null; // take ownership h.other = this; } // ~----------------------------------------------------------------------------- static class Node implements AddressableHeap.Handle, Serializable { private final static long serialVersionUID = 1; /* * We maintain explicitly the belonging heap, instead of using an inner * class due to possible cascading melding. */ SkewHeap heap; K key; V value; Node o_c; // older child Node y_s; // younger sibling or parent Node(SkewHeap heap, K key, V value) { this.heap = heap; this.key = key; this.value = value; this.o_c = null; this.y_s = null; } @Override public K getKey() { return key; } @Override public V getValue() { return value; } @Override public void setValue(V value) { this.value = value; } @Override public void decreaseKey(K newKey) { getOwner().decreaseKey(this, newKey); } @Override public void delete() { getOwner().delete(this); } /* * Get the owner heap of the handle. This is union-find with * path-compression between heaps. */ SkewHeap getOwner() { if (heap.other != heap) { // find root SkewHeap root = heap; while (root != root.other) { root = root.other; } // path-compression SkewHeap cur = heap; while (cur.other != root) { SkewHeap next = cur.other; cur.other = root; cur = next; } heap = root; } return heap; } } @SuppressWarnings("unchecked") private void decreaseKey(Node n, K newKey) { int c; if (comparator == null) { c = ((Comparable) newKey).compareTo(n.key); } else { c = comparator.compare(newKey, n.key); } if (c > 0) { throw new IllegalArgumentException("Keys can only be decreased!"); } if (c == 0 || root == n) { n.key = newKey; return; } /* * Delete and reinsert */ delete(n); n.key = newKey; if (comparator == null) { root = union(root, n); } else { root = unionWithComparator(root, n); } size++; } /** * Create a new node. * * @param key * the key * @param value * the value * @return the newly created node */ protected Node createNode(K key, V value) { return new Node(this, key, value); } /** * Delete a node from the heap. * * @param n * the node */ protected void delete(Node n) { if (n == root) { deleteMin(); return; } if (n.y_s == null) { throw new IllegalArgumentException("Invalid handle!"); } // disconnect and union children of node Node childTree = unlinkAndUnionChildren(n); // find parent Node p = getParent(n); // link children tree in place of node if (childTree == null) { // no children, just unlink from parent if (p.o_c == n) { if (n.y_s == p) { p.o_c = null; } else { p.o_c = n.y_s; } } else { p.o_c.y_s = p; } } else { // link children tree to parent if (p.o_c == n) { childTree.y_s = n.y_s; p.o_c = childTree; } else { p.o_c.y_s = childTree; childTree.y_s = p; } } size--; n.o_c = null; n.y_s = null; } /** * Unlink the two children of a node and union them forming a new tree. * * @param n * the node * @return the tree which is formed by the two children subtrees of the node */ protected Node unlinkAndUnionChildren(Node n) { // disconnect children Node child1 = n.o_c; if (child1 == null) { return null; } n.o_c = null; Node child2 = child1.y_s; if (child2 == n) { child2 = null; } else { child2.y_s = null; } child1.y_s = null; if (comparator == null) { return union(child1, child2); } else { return unionWithComparator(child1, child2); } } /** * Get the parent node of a given node. * * @param n * the node * @return the parent of a node */ protected Node getParent(Node n) { if (n.y_s == null) { return null; } Node c = n.y_s; if (c.o_c == n) { return c; } Node p1 = c.y_s; if (p1 != null && p1.o_c == n) { return p1; } return c; } /** * Unlink the right child of a node. * * @param n * the node * @return the right child after unlinking */ protected Node unlinkRightChild(Node n) { Node left = n.o_c; if (left == null || left.y_s == n) { return null; } Node right = left.y_s; left.y_s = n; right.y_s = null; return right; } /** * Top-down union of two skew heaps. * * @param root1 * the root of the first heap * @param root2 * the root of the right heap * @return the new root of the merged heap */ @SuppressWarnings("unchecked") protected Node union(Node root1, Node root2) { if (root1 == null) { return root2; } else if (root2 == null) { return root1; } Node newRoot; Node cur; // find initial int c = ((Comparable) root1.key).compareTo(root2.key); if (c <= 0) { newRoot = root1; root1 = unlinkRightChild(root1); } else { newRoot = root2; root2 = unlinkRightChild(root2); } cur = newRoot; // merge while (root1 != null && root2 != null) { c = ((Comparable) root1.key).compareTo(root2.key); if (c <= 0) { // link as left child of cur if (cur.o_c == null) { root1.y_s = cur; } else { root1.y_s = cur.o_c; } cur.o_c = root1; cur = root1; root1 = unlinkRightChild(root1); } else { // link as left child of cur if (cur.o_c == null) { root2.y_s = cur; } else { root2.y_s = cur.o_c; } cur.o_c = root2; cur = root2; root2 = unlinkRightChild(root2); } } while (root1 != null) { // link as left child of cur if (cur.o_c == null) { root1.y_s = cur; } else { root1.y_s = cur.o_c; } cur.o_c = root1; cur = root1; root1 = unlinkRightChild(root1); } while (root2 != null) { // link as left child of cur if (cur.o_c == null) { root2.y_s = cur; } else { root2.y_s = cur.o_c; } cur.o_c = root2; cur = root2; root2 = unlinkRightChild(root2); } return newRoot; } /** * Top-down union of two skew heaps with comparator. * * @param root1 * the root of the first heap * @param root2 * the root of the right heap * @return the new root of the merged heap */ protected Node unionWithComparator(Node root1, Node root2) { if (root1 == null) { return root2; } else if (root2 == null) { return root1; } Node newRoot; Node cur; // find initial int c = comparator.compare(root1.key, root2.key); if (c <= 0) { newRoot = root1; root1 = unlinkRightChild(root1); } else { newRoot = root2; root2 = unlinkRightChild(root2); } cur = newRoot; // merge while (root1 != null && root2 != null) { c = comparator.compare(root1.key, root2.key); if (c <= 0) { // link as left child of cur if (cur.o_c == null) { root1.y_s = cur; } else { root1.y_s = cur.o_c; } cur.o_c = root1; cur = root1; root1 = unlinkRightChild(root1); } else { // link as left child of cur if (cur.o_c == null) { root2.y_s = cur; } else { root2.y_s = cur.o_c; } cur.o_c = root2; cur = root2; root2 = unlinkRightChild(root2); } } while (root1 != null) { // link as left child of cur if (cur.o_c == null) { root1.y_s = cur; } else { root1.y_s = cur.o_c; } cur.o_c = root1; cur = root1; root1 = unlinkRightChild(root1); } while (root2 != null) { // link as left child of cur if (cur.o_c == null) { root2.y_s = cur; } else { root2.y_s = cur.o_c; } cur.o_c = root2; cur = root2; root2 = unlinkRightChild(root2); } return newRoot; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy