com.scudata.expression.fn.algebra.SVDecomposition Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of esproc Show documentation
Show all versions of esproc Show documentation
SPL(Structured Process Language) A programming language specially for structured data computing.
package com.scudata.expression.fn.algebra;
/**
* ?????????ֵ?ֽ??
* @author bd
*/
public class SVDecomposition {
//????m*n????A=U??V*??UΪm*m?Ͼ???V*ΪV?Ĺ???ת?ã?n*n?Ͼ???
private double[][] U, V;
//??????m*n?????е?????ֵ
private double[] s;
// ???????????
private int rows, cols;
/**
* ??ʼ??
* @param A ????
*/
public SVDecomposition(Matrix matrix) {
// Initialize.
double[][] A = matrix.getArrayCopy();
this.rows = matrix.getRows();
this.cols = matrix.getCols();
int nu = Math.min(this.rows, this.cols);
s = new double[Math.min(this.rows + 1, this.cols)];
U = new double[this.rows][nu];
V = new double[this.cols][this.cols];
double[] e = new double[this.cols ];
double[] work = new double[this.rows];
boolean wantu = true;
boolean wantv = true;
int nct = Math.min(this.rows - 1, this.cols);
int nrt = Math.max(0, Math.min(this.cols - 2, this.rows));
for (int k = 0; k < Math.max(nct, nrt); k++) {
if (k < nct) {
s[k] = 0;
for (int r = k; r < this.rows; r++) {
s[k] = Math.hypot(s[k], A[r][k]);
}
if (s[k] != 0.0) {
if (A[k][k] < 0.0) {
s[k] = -s[k];
}
for (int r = k; r < this.rows; r++) {
A[r][k] /= s[k];
}
A[k][k] += 1.0;
}
s[k] = -s[k];
}
for (int j = k + 1; j < this.cols; j++) {
if ((k < nct) & (s[k] != 0.0)) {
double t = 0;
for (int r = k; r < this.rows; r++) {
t += A[r][k] * A[r][j];
}
t = -t / A[k][k];
for (int r = k; r < this.rows; r++) {
A[r][j] += t * A[r][k];
}
}
e[j] = A[k][j];
}
if (wantu & (k < nct)) {
for (int r = k; r < this.rows; r++) {
U[r][k] = A[r][k];
}
}
if (k < nrt) {
e[k] = 0;
for (int r = k + 1; r < this.cols; r++) {
e[k] = Math.hypot(e[k], e[r]);
}
if (e[k] != 0.0) {
if (e[k + 1] < 0.0) {
e[k] = -e[k];
}
for (int r = k + 1; r < this.cols; r++) {
e[r] /= e[k];
}
e[k + 1] += 1.0;
}
e[k] = -e[k];
if ((k + 1 < this.rows) & (e[k] != 0.0)) {
for (int r = k + 1; r < this.rows; r++) {
work[r] = 0.0;
}
for (int j = k + 1; j < this.cols; j++) {
for (int r = k + 1; r < this.rows; r++) {
work[r] += e[j] * A[r][j];
}
}
for (int j = k + 1; j < this.cols; j++) {
double t = -e[j] / e[k + 1];
for (int r = k + 1; r < this.rows; r++) {
A[r][j] += t * work[r];
}
}
}
if (wantv) {
for (int r = k + 1; r < this.cols; r++) {
V[r][k] = e[r];
}
}
}
}
int p = Math.min(this.cols, this.rows + 1);
if (nct < this.cols) {
s[nct] = A[nct][nct];
}
if (this.rows < p) {
s[p - 1] = 0.0;
}
if (nrt + 1 < p) {
e[nrt] = A[nrt][p - 1];
}
e[p - 1] = 0.0;
if (wantu) {
for (int j = nct; j < nu; j++) {
for (int r = 0; r < this.rows; r++) {
U[r][j] = 0.0;
}
U[j][j] = 1.0;
}
for (int k = nct - 1; k >= 0; k--) {
if (s[k] != 0.0) {
for (int j = k + 1; j < nu; j++) {
double t = 0;
for (int r = k; r < this.rows; r++) {
t += U[r][k] * U[r][j];
}
t = -t / U[k][k];
for (int r = k; r < this.rows; r++) {
U[r][j] += t * U[r][k];
}
}
for (int r = k; r < this.rows; r++) {
U[r][k] = -U[r][k];
}
U[k][k] = 1.0 + U[k][k];
for (int r = 0; r < k - 1; r++) {
U[r][k] = 0.0;
}
} else {
for (int r = 0; r < this.rows; r++) {
U[r][k] = 0.0;
}
U[k][k] = 1.0;
}
}
}
if (wantv) {
for (int k = this.cols - 1; k >= 0; k--) {
if ((k < nrt) & (e[k] != 0.0)) {
for (int j = k + 1; j < nu; j++) {
double t = 0;
for (int r = k + 1; r < this.cols; r++) {
t += V[r][k] * V[r][j];
}
t = -t / V[k + 1][k];
for (int r = k + 1; r < this.cols; r++) {
V[r][j] += t * V[r][k];
}
}
}
for (int r = 0; r < this.cols; r++) {
V[r][k] = 0.0;
}
V[k][k] = 1.0;
}
}
int pp = p - 1;
int iter = 0;
double eps = Math.pow(2.0, -52.0);
double tiny = Math.pow(2.0, -966.0);
while (p > 0) {
int k, kase;
for (k = p - 2; k >= -1; k--) {
if (k == -1) {
break;
}
if (Math.abs(e[k]) <= tiny + eps * (Math.abs(s[k]) + Math.abs(s[k + 1]))) {
e[k] = 0.0;
break;
}
}
if (k == p - 2) {
kase = 4;
} else {
int ks;
for (ks = p - 1; ks >= k; ks--) {
if (ks == k) {
break;
}
double t = (ks != p ? Math.abs(e[ks]) : 0.) + (ks != k + 1 ? Math.abs(e[ks - 1]) : 0.);
if (Math.abs(s[ks]) <= tiny + eps * t) {
s[ks] = 0.0;
break;
}
}
if (ks == k) {
kase = 3;
} else if (ks == p - 1) {
kase = 1;
} else {
kase = 2;
k = ks;
}
}
k++;
switch (kase) {
case 1: {
double f = e[p - 2];
e[p - 2] = 0.0;
for (int j = p - 2; j >= k; j--) {
double t = Math.hypot(s[j], f);
double cs = s[j] / t;
double sn = f / t;
s[j] = t;
if (j != k) {
f = -sn * e[j - 1];
e[j - 1] = cs * e[j - 1];
}
if (wantv) {
for (int r = 0; r < this.cols; r++) {
t = cs * V[r][j] + sn * V[r][p - 1];
V[r][p - 1] = -sn * V[r][j] + cs * V[r][p - 1];
V[r][j] = t;
}
}
}
}
break;
case 2: {
double f = e[k - 1];
e[k - 1] = 0.0;
for (int j = k; j < p; j++) {
double t = Math.hypot(s[j], f);
double cs = s[j] / t;
double sn = f / t;
s[j] = t;
f = -sn * e[j];
e[j] = cs * e[j];
if (wantu) {
for (int r = 0; r < this.rows; r++) {
t = cs * U[r][j] + sn * U[r][k - 1];
U[r][k - 1] = -sn * U[r][j] + cs * U[r][k - 1];
U[r][j] = t;
}
}
}
}
break;
case 3: {
double scale = Math
.max(Math.max(Math.max(Math.max(Math.abs(s[p - 1]), Math.abs(s[p - 2])), Math.abs(e[p - 2])),
Math.abs(s[k])), Math.abs(e[k]));
double sp = s[p - 1] / scale;
double spm1 = s[p - 2] / scale;
double epm1 = e[p - 2] / scale;
double sk = s[k] / scale;
double ek = e[k] / scale;
double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
double c = (sp * epm1) * (sp * epm1);
double shift = 0.0;
if ((b != 0.0) | (c != 0.0)) {
shift = Math.sqrt(b * b + c);
if (b < 0.0) {
shift = -shift;
}
shift = c / (b + shift);
}
double f = (sk + sp) * (sk - sp) + shift;
double g = sk * ek;
for (int j = k; j < p - 1; j++) {
double t = Math.hypot(f, g);
double cs = f / t;
double sn = g / t;
if (j != k) {
e[j - 1] = t;
}
f = cs * s[j] + sn * e[j];
e[j] = cs * e[j] - sn * s[j];
g = sn * s[j + 1];
s[j + 1] = cs * s[j + 1];
if (wantv) {
for (int r = 0; r < this.cols; r++) {
t = cs * V[r][j] + sn * V[r][j + 1];
V[r][j + 1] = -sn * V[r][j] + cs * V[r][j + 1];
V[r][j] = t;
}
}
t = Math.hypot(f, g);
cs = f / t;
sn = g / t;
s[j] = t;
f = cs * e[j] + sn * s[j + 1];
s[j + 1] = -sn * e[j] + cs * s[j + 1];
g = sn * e[j + 1];
e[j + 1] = cs * e[j + 1];
if (wantu && (j < this.rows - 1)) {
for (int r = 0; r < this.rows; r++) {
t = cs * U[r][j] + sn * U[r][j + 1];
U[r][j + 1] = -sn * U[r][j] + cs * U[r][j + 1];
U[r][j] = t;
}
}
}
e[p - 2] = f;
iter = iter + 1;
}
break;
case 4: {
if (s[k] <= 0.0) {
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
if (wantv) {
for (int r = 0; r <= pp; r++) {
V[r][k] = -V[r][k];
}
}
}
while (k < pp) {
if (s[k] >= s[k + 1]) {
break;
}
double t = s[k];
s[k] = s[k + 1];
s[k + 1] = t;
if (wantv && (k < this.cols - 1)) {
for (int r = 0; r < this.cols; r++) {
t = V[r][k + 1];
V[r][k + 1] = V[r][k];
V[r][k] = t;
}
}
if (wantu && (k < this.rows - 1)) {
for (int r = 0; r < this.rows; r++) {
t = U[r][k + 1];
U[r][k + 1] = U[r][k];
U[r][k] = t;
}
}
k++;
}
iter = 0;
p--;
}
break;
}
}
}
/**
* Return the left singular vectors
* @return U
*/
public Matrix getU() {
return new Matrix(U, this.rows, Math.min(this.rows + 1, this.cols));
}
/**
* Return the right singular vectors
* @return V
*/
public Matrix getV() {
return new Matrix(V, this.cols, this.cols);
}
/**
* Return the one-dimensional array of singular values
* @return diagonal of S.
*/
public double[] getSingularValues() {
return s;
}
/**
* ????????ֵ?ԽǾ???
* @return S
*/
public Matrix getS() {
Matrix X = new Matrix(this.cols, this.cols);
double[][] S = X.getArray();
for (int r = 0; r < this.cols; r++) {
for (int j = 0; j < this.cols; j++) {
S[r][j] = 0.0;
}
S[r][r] = this.s[r];
}
return X;
}
/**
* Two norm
* @return max(S)
*/
public double norm2() {
return s[0];
}
/**
* Two norm condition number
* @return max(S)/min(S)
*/
public double cond() {
return s[0] / s[Math.min(this.rows, this.cols) - 1];
}
/**
* Effective numerical matrix rank
* @return Number of nonnegligible singular values.
*/
public int rank() {
double eps = Math.pow(2.0, -52.0);
double tol = Math.max(this.rows, this.cols) * s[0] * eps;
int rank = 0;
for (int r = 0; r < s.length; r++) {
if (s[r] > tol) {
rank++;
}
}
return rank;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy