All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.scudata.util.FloatingDecimal Maven / Gradle / Ivy

Go to download

SPL(Structured Process Language) A programming language specially for structured data computing.

There is a newer version: 20241126
Show newest version

package com.scudata.util;

/**
 * ??java??FloatingDecimal?????޸ģ???ʽ?????Ƿ???null?????׳??쳣??
 * ???ڴ????????????ͽ????׳??쳣Ӱ?????ܡ?
 */
public class FloatingDecimal {
	boolean isExceptional;
	boolean isNegative;
	int decExponent;
	char digits[];
	int nDigits;
	int bigIntExp;
	int bigIntNBits;
	boolean mustSetRoundDir = false;
	int roundDir; // set by doubleValue

	private FloatingDecimal(boolean negSign, int decExponent, char[] digits,
							int n, boolean e) {
		isNegative = negSign;
		isExceptional = e;
		this.decExponent = decExponent;
		this.digits = digits;
		this.nDigits = n;
	}

	/*
	 * Constants of the implementation
	 * Most are IEEE-754 related.
	 * (There are more really boring constants at the end.)
	 */
	static final long signMask = 0x8000000000000000L;
	static final long expMask = 0x7ff0000000000000L;
	static final long fractMask = ~(signMask | expMask);
	static final int expShift = 52;
	static final int expBias = 1023;
	static final long fractHOB = (1L << expShift); // assumed High-Order bit
	static final long expOne = ((long)expBias) << expShift; // exponent of 1.0
	static final int maxSmallBinExp = 62;
	static final int minSmallBinExp = -(63 / 3);
	static final int maxDecimalDigits = 15;
	static final int maxDecimalExponent = 308;
	static final int minDecimalExponent = -324;
	static final int bigDecimalExponent = 324; // i.e. abs(minDecimalExponent)

	static final long highbyte = 0xff00000000000000L;
	static final long highbit = 0x8000000000000000L;
	static final long lowbytes = ~highbyte;

	static final int singleSignMask = 0x80000000;
	static final int singleExpMask = 0x7f800000;
	static final int singleFractMask = ~(singleSignMask | singleExpMask);
	static final int singleExpShift = 23;
	static final int singleFractHOB = 1 << singleExpShift;
	static final int singleExpBias = 127;
	static final int singleMaxDecimalDigits = 7;
	static final int singleMaxDecimalExponent = 38;
	static final int singleMinDecimalExponent = -45;

	static final int intDecimalDigits = 9;

	/*
	 * count number of bits from high-order 1 bit to low-order 1 bit,
	 * inclusive.
	 */
	private static int
		countBits(long v) {
		//
		// the strategy is to shift until we get a non-zero sign bit
		// then shift until we have no bits left, counting the difference.
		// we do byte shifting as a hack. Hope it helps.
		//
		if (v == 0L)return 0;

		while ((v & highbyte) == 0L) {
			v <<= 8;
		} while (v > 0L) { // i.e. while ((v&highbit) == 0L )
			v <<= 1;
		}

		int n = 0;
		while ((v & lowbytes) != 0L) {
			v <<= 8;
			n += 8;
		} while (v != 0L) {
			v <<= 1;
			n += 1;
		}
		return n;
	}

	/*
	 * Keep big powers of 5 handy for future reference.
	 */
	private static FDBigInt b5p[];

	private static synchronized FDBigInt
		big5pow(int p) {
		if (p < 0)
			throw new RuntimeException("Assertion botch: negative power of 5");
		if (b5p == null) {
			b5p = new FDBigInt[p + 1];
		} else if (b5p.length <= p) {
			FDBigInt t[] = new FDBigInt[p + 1];
			System.arraycopy(b5p, 0, t, 0, b5p.length);
			b5p = t;
		}
		if (b5p[p] != null)
			return b5p[p];
		else if (p < small5pow.length)
			return b5p[p] = new FDBigInt(small5pow[p]);
		else if (p < long5pow.length)
			return b5p[p] = new FDBigInt(long5pow[p]);
		else {
			// construct the value.
			// recursively.
			int q, r;
			// in order to compute 5^p,
			// compute its square root, 5^(p/2) and square.
			// or, let q = p / 2, r = p -q, then
			// 5^p = 5^(q+r) = 5^q * 5^r
			q = p >> 1;
			r = p - q;
			FDBigInt bigq = b5p[q];
			if (bigq == null)
				bigq = big5pow(q);
			if (r < small5pow.length) {
				return (b5p[p] = bigq.mult(small5pow[r]));
			} else {
				FDBigInt bigr = b5p[r];
				if (bigr == null)
					bigr = big5pow(r);
				return (b5p[p] = bigq.mult(bigr));
			}
		}
	}

	//
	// a common operation
	//
	private static FDBigInt
		multPow52(FDBigInt v, int p5, int p2) {
		if (p5 != 0) {
			if (p5 < small5pow.length) {
				v = v.mult(small5pow[p5]);
			} else {
				v = v.mult(big5pow(p5));
			}
		}
		if (p2 != 0) {
			v.lshiftMe(p2);
		}
		return v;
	}

	//
	// another common operation
	//
	private static FDBigInt
		constructPow52(int p5, int p2) {
		FDBigInt v = new FDBigInt(big5pow(p5));
		if (p2 != 0) {
			v.lshiftMe(p2);
		}
		return v;
	}

	/*
	 * Make a floating double into a FDBigInt.
	 * This could also be structured as a FDBigInt
	 * constructor, but we'd have to build a lot of knowledge
	 * about floating-point representation into it, and we don't want to.
	 *
	 * AS A SIDE EFFECT, THIS METHOD WILL SET THE INSTANCE VARIABLES
	 * bigIntExp and bigIntNBits
	 *
	 */
	private FDBigInt
		doubleToBigInt(double dval) {
		long lbits = Double.doubleToLongBits(dval) & ~signMask;
		int binexp = (int)(lbits >>> expShift);
		lbits &= fractMask;
		if (binexp > 0) {
			lbits |= fractHOB;
		} else {
			if (lbits == 0L)
				throw new RuntimeException(
					"Assertion botch: doubleToBigInt(0.0)");
			binexp += 1;
			while ((lbits & fractHOB) == 0L) {
				lbits <<= 1;
				binexp -= 1;
			}
		}
		binexp -= expBias;
		int nbits = countBits(lbits);
		/*
		 * We now know where the high-order 1 bit is,
		 * and we know how many there are.
		 */
		int lowOrderZeros = expShift + 1 - nbits;
		lbits >>>= lowOrderZeros;

		bigIntExp = binexp + 1 - nbits;
		bigIntNBits = nbits;
		return new FDBigInt(lbits);
	}

	/*
	 * Compute a number that is the ULP of the given value,
	 * for purposes of addition/subtraction. Generally easy.
	 * More difficult if subtracting and the argument
	 * is a normalized a power of 2, as the ULP changes at these points.
	 */
	private static double
		ulp(double dval, boolean subtracting) {
		long lbits = Double.doubleToLongBits(dval) & ~signMask;
		int binexp = (int)(lbits >>> expShift);
		double ulpval;
		if (subtracting && (binexp >= expShift) && ((lbits & fractMask) == 0L)) {
			// for subtraction from normalized, powers of 2,
			// use next-smaller exponent
			binexp -= 1;
		}
		if (binexp > expShift) {
			ulpval = Double.longBitsToDouble(((long)(binexp - expShift)) <<
											 expShift);
		} else if (binexp == 0) {
			ulpval = Double.MIN_VALUE;
		} else {
			ulpval = Double.longBitsToDouble(1L << (binexp - 1));
		}
		if (subtracting)ulpval = -ulpval;

		return ulpval;
	}

	/*
	 * Round a double to a float.
	 * In addition to the fraction bits of the double,
	 * look at the class instance variable roundDir,
	 * which should help us avoid double-rounding error.
	 * roundDir was set in hardValueOf if the estimate was
	 * close enough, but not exact. It tells us which direction
	 * of rounding is preferred.
	 */
	float
		stickyRound(double dval) {
		long lbits = Double.doubleToLongBits(dval);
		long binexp = lbits & expMask;
		if (binexp == 0L || binexp == expMask) {
			// what we have here is special.
			// don't worry, the right thing will happen.
			return (float)dval;
		}
		lbits += (long)roundDir; // hack-o-matic.
		return (float)Double.longBitsToDouble(lbits);
	}

	/*
	 * This is the easy subcase --
	 * all the significant bits, after scaling, are held in lvalue.
	 * negSign and decExponent tell us what processing and scaling
	 * has already been done. Exceptional cases have already been
	 * stripped out.
	 * In particular:
	 * lvalue is a finite number (not Inf, nor NaN)
	 * lvalue > 0L (not zero, nor negative).
	 *
	 * The only reason that we develop the digits here, rather than
	 * calling on Long.toString() is that we can do it a little faster,
	 * and besides want to treat trailing 0s specially. If Long.toString
	 * changes, we should re-evaluate this strategy!
	 */
	private void
		developLongDigits(int decExponent, long lvalue, long insignificant) {
		char digits[];
		int ndigits;
		int digitno;
		int c;
		//
		// Discard non-significant low-order bits, while rounding,
		// up to insignificant value.
		int i;
		for (i = 0; insignificant >= 10L; i++)
			insignificant /= 10L;
		if (i != 0) {
			long pow10 = long5pow[i] << i; // 10^i == 5^i * 2^i;
			long residue = lvalue % pow10;
			lvalue /= pow10;
			decExponent += i;
			if (residue >= (pow10 >> 1)) {
				// round up based on the low-order bits we're discarding
				lvalue++;
			}
		}
		if (lvalue <= Integer.MAX_VALUE) {
			if (lvalue <= 0L)
				throw new RuntimeException("Assertion botch: value " + lvalue +
										   " <= 0");

			// even easier subcase!
			// can do int arithmetic rather than long!
			int ivalue = (int)lvalue;
			digits = new char[ndigits = 10];
			digitno = ndigits - 1;
			c = ivalue % 10;
			ivalue /= 10;
			while (c == 0) {
				decExponent++;
				c = ivalue % 10;
				ivalue /= 10;
			} while (ivalue != 0) {
				digits[digitno--] = (char)(c + '0');
				decExponent++;
				c = ivalue % 10;
				ivalue /= 10;
			}
			digits[digitno] = (char)(c + '0');
		} else {
			// same algorithm as above (same bugs, too )
			// but using long arithmetic.
			digits = new char[ndigits = 20];
			digitno = ndigits - 1;
			c = (int)(lvalue % 10L);
			lvalue /= 10L;
			while (c == 0) {
				decExponent++;
				c = (int)(lvalue % 10L);
				lvalue /= 10L;
			} while (lvalue != 0L) {
				digits[digitno--] = (char)(c + '0');
				decExponent++;
				c = (int)(lvalue % 10L);
				lvalue /= 10;
			}
			digits[digitno] = (char)(c + '0');
		}
		char result[];
		ndigits -= digitno;
		if (digitno == 0)
			result = digits;
		else {
			result = new char[ndigits];
			System.arraycopy(digits, digitno, result, 0, ndigits);
		}
		this.digits = result;
		this.decExponent = decExponent + 1;
		this.nDigits = ndigits;
	}

	//
	// add one to the least significant digit.
	// in the unlikely event there is a carry out,
	// deal with it.
	// assert that this will only happen where there
	// is only one digit, e.g. (float)1e-44 seems to do it.
	//
	private void
		roundup() {
		int i;
		int q = digits[i = (nDigits - 1)];
		if (q == '9') {
			while (q == '9' && i > 0) {
				digits[i] = '0';
				q = digits[--i];
			}
			if (q == '9') {
				// carryout! High-order 1, rest 0s, larger exp.
				decExponent += 1;
				digits[0] = '1';
				return;
			}
			// else fall through.
		}
		digits[i] = (char)(q + 1);
	}

	/*
	 * FIRST IMPORTANT CONSTRUCTOR: DOUBLE
	 */
	public FloatingDecimal(double d) {
		long dBits = Double.doubleToLongBits(d);
		long fractBits;
		int binExp;
		int nSignificantBits;

		// discover and delete sign
		if ((dBits & signMask) != 0) {
			isNegative = true;
			dBits ^= signMask;
		} else {
			isNegative = false;
		}
		// Begin to unpack
		// Discover obvious special cases of NaN and Infinity.
		binExp = (int)((dBits & expMask) >> expShift);
		fractBits = dBits & fractMask;
		if (binExp == (int)(expMask >> expShift)) {
			isExceptional = true;
			if (fractBits == 0L) {
				digits = infinity;
			} else {
				digits = notANumber;
				isNegative = false; // NaN has no sign!
			}
			nDigits = digits.length;
			return;
		}
		isExceptional = false;
		// Finish unpacking
		// Normalize denormalized numbers.
		// Insert assumed high-order bit for normalized numbers.
		// Subtract exponent bias.
		if (binExp == 0) {
			if (fractBits == 0L) {
				// not a denorm, just a 0!
				decExponent = 0;
				digits = zero;
				nDigits = 1;
				return;
			} while ((fractBits & fractHOB) == 0L) {
				fractBits <<= 1;
				binExp -= 1;
			}
			nSignificantBits = expShift + binExp + 1; // recall binExp is  - shift count.
			binExp += 1;
		} else {
			fractBits |= fractHOB;
			nSignificantBits = expShift + 1;
		}
		binExp -= expBias;
		// call the routine that actually does all the hard work.
		dtoa(binExp, fractBits, nSignificantBits);
	}

	/*
	 * SECOND IMPORTANT CONSTRUCTOR: SINGLE
	 */
	public FloatingDecimal(float f) {
		int fBits = Float.floatToIntBits(f);
		int fractBits;
		int binExp;
		int nSignificantBits;

		// discover and delete sign
		if ((fBits & singleSignMask) != 0) {
			isNegative = true;
			fBits ^= singleSignMask;
		} else {
			isNegative = false;
		}
		// Begin to unpack
		// Discover obvious special cases of NaN and Infinity.
		binExp = (int)((fBits & singleExpMask) >> singleExpShift);
		fractBits = fBits & singleFractMask;
		if (binExp == (int)(singleExpMask >> singleExpShift)) {
			isExceptional = true;
			if (fractBits == 0L) {
				digits = infinity;
			} else {
				digits = notANumber;
				isNegative = false; // NaN has no sign!
			}
			nDigits = digits.length;
			return;
		}
		isExceptional = false;
		// Finish unpacking
		// Normalize denormalized numbers.
		// Insert assumed high-order bit for normalized numbers.
		// Subtract exponent bias.
		if (binExp == 0) {
			if (fractBits == 0) {
				// not a denorm, just a 0!
				decExponent = 0;
				digits = zero;
				nDigits = 1;
				return;
			} while ((fractBits & singleFractHOB) == 0) {
				fractBits <<= 1;
				binExp -= 1;
			}
			nSignificantBits = singleExpShift + binExp + 1; // recall binExp is  - shift count.
			binExp += 1;
		} else {
			fractBits |= singleFractHOB;
			nSignificantBits = singleExpShift + 1;
		}
		binExp -= singleExpBias;
		// call the routine that actually does all the hard work.
		dtoa(binExp, ((long)fractBits) << (expShift - singleExpShift),
			 nSignificantBits);
	}

	private void
		dtoa(int binExp, long fractBits, int nSignificantBits) {
		int nFractBits; // number of significant bits of fractBits;
		int nTinyBits; // number of these to the right of the point.
		int decExp;

		// Examine number. Determine if it is an easy case,
		// which we can do pretty trivially using float/long conversion,
		// or whether we must do real work.
		nFractBits = countBits(fractBits);
		nTinyBits = Math.max(0, nFractBits - binExp - 1);
		if (binExp <= maxSmallBinExp && binExp >= minSmallBinExp) {
			// Look more closely at the number to decide if,
			// with scaling by 10^nTinyBits, the result will fit in
			// a long.
			if ((nTinyBits < long5pow.length) &&
				((nFractBits + n5bits[nTinyBits]) < 64)) {
				/*
				 * We can do this:
				 * take the fraction bits, which are normalized.
				 * (a) nTinyBits == 0: Shift left or right appropriately
				 *     to align the binary point at the extreme right, i.e.
				 *     where a long int point is expected to be. The integer
				 *     result is easily converted to a string.
				 * (b) nTinyBits > 0: Shift right by expShift-nFractBits,
				 *     which effectively converts to long and scales by
				 *     2^nTinyBits. Then multiply by 5^nTinyBits to
				 *     complete the scaling. We know this won't overflow
				 *     because we just counted the number of bits necessary
				 *     in the result. The integer you get from this can
				 *     then be converted to a string pretty easily.
				 */
				long halfULP;
				if (nTinyBits == 0) {
					if (binExp > nSignificantBits) {
						halfULP = 1L << (binExp - nSignificantBits - 1);
					} else {
						halfULP = 0L;
					}
					if (binExp >= expShift) {
						fractBits <<= (binExp - expShift);
					} else {
						fractBits >>>= (expShift - binExp);
					}
					developLongDigits(0, fractBits, halfULP);
					return;
				}
				/*
				 * The following causes excess digits to be printed
				 * out in the single-float case. Our manipulation of
				 * halfULP here is apparently not correct. If we
				 * better understand how this works, perhaps we can
				 * use this special case again. But for the time being,
				 * we do not.
				 * else {
				 *     fractBits >>>= expShift+1-nFractBits;
				 *     fractBits *= long5pow[ nTinyBits ];
				 *     halfULP = long5pow[ nTinyBits ] >> (1+nSignificantBits-nFractBits);
				 *     developLongDigits( -nTinyBits, fractBits, halfULP );
				 *     return;
				 * }
				 */
			}
		}
		/*
		 * This is the hard case. We are going to compute large positive
		 * integers B and S and integer decExp, s.t.
		 *	d = ( B / S ) * 10^decExp
		 *	1 <= B / S < 10
		 * Obvious choices are:
		 *	decExp = floor( log10(d) )
		 * 	B      = d * 2^nTinyBits * 10^max( 0, -decExp )
		 *	S      = 10^max( 0, decExp) * 2^nTinyBits
		 * (noting that nTinyBits has already been forced to non-negative)
		 * I am also going to compute a large positive integer
		 *	M      = (1/2^nSignificantBits) * 2^nTinyBits * 10^max( 0, -decExp )
		 * i.e. M is (1/2) of the ULP of d, scaled like B.
		 * When we iterate through dividing B/S and picking off the
		 * quotient bits, we will know when to stop when the remainder
		 * is <= M.
		 *
		 * We keep track of powers of 2 and powers of 5.
		 */

		/*
		 * Estimate decimal exponent. (If it is small-ish,
		 * we could double-check.)
		 *
		 * First, scale the mantissa bits such that 1 <= d2 < 2.
		 * We are then going to estimate
		 *	    log10(d2) ~=~  (d2-1.5)/1.5 + log(1.5)
		 * and so we can estimate
		 *      log10(d) ~=~ log10(d2) + binExp * log10(2)
		 * take the floor and call it decExp.
		 * FIXME -- use more precise constants here. It costs no more.
		 */
		double d2 = Double.longBitsToDouble(
			expOne | (fractBits & ~fractHOB));
		decExp = (int)Math.floor(
			(d2 - 1.5D) * 0.289529654D + 0.176091259 +
			(double)binExp * 0.301029995663981);
		int B2, B5; // powers of 2 and powers of 5, respectively, in B
		int S2, S5; // powers of 2 and powers of 5, respectively, in S
		int M2, M5; // powers of 2 and powers of 5, respectively, in M
		int Bbits; // binary digits needed to represent B, approx.
		int tenSbits; // binary digits needed to represent 10*S, approx.
		FDBigInt Sval, Bval, Mval;

		B5 = Math.max(0, -decExp);
		B2 = B5 + nTinyBits + binExp;

		S5 = Math.max(0, decExp);
		S2 = S5 + nTinyBits;

		M5 = B5;
		M2 = B2 - nSignificantBits;

		/*
		 * the long integer fractBits contains the (nFractBits) interesting
		 * bits from the mantissa of d ( hidden 1 added if necessary) followed
		 * by (expShift+1-nFractBits) zeros. In the interest of compactness,
		 * I will shift out those zeros before turning fractBits into a
		 * FDBigInt. The resulting whole number will be
		 * 	d * 2^(nFractBits-1-binExp).
		 */
		fractBits >>>= (expShift + 1 - nFractBits);
		B2 -= nFractBits - 1;
		int common2factor = Math.min(B2, S2);
		B2 -= common2factor;
		S2 -= common2factor;
		M2 -= common2factor;

		/*
		 * HACK!! For exact powers of two, the next smallest number
		 * is only half as far away as we think (because the meaning of
		 * ULP changes at power-of-two bounds) for this reason, we
		 * hack M2. Hope this works.
		 */
		if (nFractBits == 1)
			M2 -= 1;

		if (M2 < 0) {
			// oops.
			// since we cannot scale M down far enough,
			// we must scale the other values up.
			B2 -= M2;
			S2 -= M2;
			M2 = 0;
		}
		/*
		 * Construct, Scale, iterate.
		 * Some day, we'll write a stopping test that takes
		 * account of the assymetry of the spacing of floating-point
		 * numbers below perfect powers of 2
		 * 26 Sept 96 is not that day.
		 * So we use a symmetric test.
		 */
		char digits[] = this.digits = new char[18];
		int ndigit = 0;
		boolean low, high;
		long lowDigitDifference;
		int q;

		/*
		 * Detect the special cases where all the numbers we are about
		 * to compute will fit in int or long integers.
		 * In these cases, we will avoid doing FDBigInt arithmetic.
		 * We use the same algorithms, except that we "normalize"
		 * our FDBigInts before iterating. This is to make division easier,
		 * as it makes our fist guess (quotient of high-order words)
		 * more accurate!
		 *
		 * Some day, we'll write a stopping test that takes
		 * account of the assymetry of the spacing of floating-point
		 * numbers below perfect powers of 2
		 * 26 Sept 96 is not that day.
		 * So we use a symmetric test.
		 */
		Bbits = nFractBits + B2 + ((B5 < n5bits.length) ? n5bits[B5] : (B5 * 3));
		tenSbits = S2 + 1 +
			(((S5 + 1) < n5bits.length) ? n5bits[(S5 + 1)] : ((S5 + 1) * 3));
		if (Bbits < 64 && tenSbits < 64) {
			if (Bbits < 32 && tenSbits < 32) {
				// wa-hoo! They're all ints!
				int b = ((int)fractBits * small5pow[B5]) << B2;
				int s = small5pow[S5] << S2;
				int m = small5pow[M5] << M2;
				int tens = s * 10;
				/*
				 * Unroll the first iteration. If our decExp estimate
				 * was too high, our first quotient will be zero. In this
				 * case, we discard it and decrement decExp.
				 */
				ndigit = 0;
				q = (int)(b / s);
				b = 10 * (b % s);
				m *= 10;
				low = (b < m);
				high = (b + m > tens);
				if (q >= 10) {
					// bummer, dude
					throw new RuntimeException(
						"Assertion botch: excessivly large digit " + q);
				} else if ((q == 0) && !high) {
					// oops. Usually ignore leading zero.
					decExp--;
				} else {
					digits[ndigit++] = (char)('0' + q);
				}
				/*
				 * HACK! Java spec sez that we always have at least
				 * one digit after the . in either F- or E-form output.
				 * Thus we will need more than one digit if we're using
				 * E-form
				 */
				if (decExp <= -3 || decExp >= 8) {
					high = low = false;
				} while (!low && !high) {
					q = (int)(b / s);
					b = 10 * (b % s);
					m *= 10;
					if (q >= 10) {
						// bummer, dude
						throw new RuntimeException(
							"Assertion botch: excessivly large digit " + q);
					}
					if (m > 0L) {
						low = (b < m);
						high = (b + m > tens);
					} else {
						// hack -- m might overflow!
						// in this case, it is certainly > b,
						// which won't
						// and b+m > tens, too, since that has overflowed
						// either!
						low = true;
						high = true;
					}
					digits[ndigit++] = (char)('0' + q);
				}
				lowDigitDifference = (b << 1) - tens;
			} else {
				// still good! they're all longs!
				long b = (fractBits * long5pow[B5]) << B2;
				long s = long5pow[S5] << S2;
				long m = long5pow[M5] << M2;
				long tens = s * 10L;
				/*
				 * Unroll the first iteration. If our decExp estimate
				 * was too high, our first quotient will be zero. In this
				 * case, we discard it and decrement decExp.
				 */
				ndigit = 0;
				q = (int)(b / s);
				b = 10L * (b % s);
				m *= 10L;
				low = (b < m);
				high = (b + m > tens);
				if (q >= 10) {
					// bummer, dude
					throw new RuntimeException(
						"Assertion botch: excessivly large digit " + q);
				} else if ((q == 0) && !high) {
					// oops. Usually ignore leading zero.
					decExp--;
				} else {
					digits[ndigit++] = (char)('0' + q);
				}
				/*
				 * HACK! Java spec sez that we always have at least
				 * one digit after the . in either F- or E-form output.
				 * Thus we will need more than one digit if we're using
				 * E-form
				 */
				if (decExp <= -3 || decExp >= 8) {
					high = low = false;
				} while (!low && !high) {
					q = (int)(b / s);
					b = 10 * (b % s);
					m *= 10;
					if (q >= 10) {
						// bummer, dude
						throw new RuntimeException(
							"Assertion botch: excessivly large digit " + q);
					}
					if (m > 0L) {
						low = (b < m);
						high = (b + m > tens);
					} else {
						// hack -- m might overflow!
						// in this case, it is certainly > b,
						// which won't
						// and b+m > tens, too, since that has overflowed
						// either!
						low = true;
						high = true;
					}
					digits[ndigit++] = (char)('0' + q);
				}
				lowDigitDifference = (b << 1) - tens;
			}
		} else {
			FDBigInt tenSval;
			int shiftBias;

			/*
			 * We really must do FDBigInt arithmetic.
			 * Fist, construct our FDBigInt initial values.
			 */
			Bval = multPow52(new FDBigInt(fractBits), B5, B2);
			Sval = constructPow52(S5, S2);
			Mval = constructPow52(M5, M2);

			// normalize so that division works better
			Bval.lshiftMe(shiftBias = Sval.normalizeMe());
			Mval.lshiftMe(shiftBias);
			tenSval = Sval.mult(10);
			/*
			 * Unroll the first iteration. If our decExp estimate
			 * was too high, our first quotient will be zero. In this
			 * case, we discard it and decrement decExp.
			 */
			ndigit = 0;
			q = Bval.quoRemIteration(Sval);
			Mval = Mval.mult(10);
			low = (Bval.cmp(Mval) < 0);
			high = (Bval.add(Mval).cmp(tenSval) > 0);
			if (q >= 10) {
				// bummer, dude
				throw new RuntimeException(
					"Assertion botch: excessivly large digit " + q);
			} else if ((q == 0) && !high) {
				// oops. Usually ignore leading zero.
				decExp--;
			} else {
				digits[ndigit++] = (char)('0' + q);
			}
			/*
			 * HACK! Java spec sez that we always have at least
			 * one digit after the . in either F- or E-form output.
			 * Thus we will need more than one digit if we're using
			 * E-form
			 */
			if (decExp <= -3 || decExp >= 8) {
				high = low = false;
			} while (!low && !high) {
				q = Bval.quoRemIteration(Sval);
				Mval = Mval.mult(10);
				if (q >= 10) {
					// bummer, dude
					throw new RuntimeException(
						"Assertion botch: excessivly large digit " + q);
				}
				low = (Bval.cmp(Mval) < 0);
				high = (Bval.add(Mval).cmp(tenSval) > 0);
				digits[ndigit++] = (char)('0' + q);
			}
			if (high && low) {
				Bval.lshiftMe(1);
				lowDigitDifference = Bval.cmp(tenSval);
			} else
				lowDigitDifference = 0L; // this here only for flow analysis!
		}
		this.decExponent = decExp + 1;
		this.digits = digits;
		this.nDigits = ndigit;
		/*
		 * Last digit gets rounded based on stopping condition.
		 */
		if (high) {
			if (low) {
				if (lowDigitDifference == 0L) {
					// it's a tie!
					// choose based on which digits we like.
					if ((digits[nDigits - 1] & 1) != 0)roundup();
				} else if (lowDigitDifference > 0) {
					roundup();
				}
			} else {
				roundup();
			}
		}
	}

	public String
		toString() {
		// most brain-dead version
		StringBuffer result = new StringBuffer(nDigits + 8);
		if (isNegative) {result.append('-');
		}
		if (isExceptional) {
			result.append(digits, 0, nDigits);
		} else {
			result.append("0.");
			result.append(digits, 0, nDigits);
			result.append('e');
			result.append(decExponent);
		}
		return new String(result);
	}

	public String
		toJavaFormatString() {
		char result[] = new char[nDigits + 10];
		int i = 0;
		if (isNegative) {result[0] = '-';
		i = 1;
		}
		if (isExceptional) {
			System.arraycopy(digits, 0, result, i, nDigits);
			i += nDigits;
		} else {
			if (decExponent > 0 && decExponent < 8) {
				// print digits.digits.
				int charLength = Math.min(nDigits, decExponent);
				System.arraycopy(digits, 0, result, i, charLength);
				i += charLength;
				if (charLength < decExponent) {
					charLength = decExponent - charLength;
					System.arraycopy(zero, 0, result, i, charLength);
					i += charLength;
					result[i++] = '.';
					result[i++] = '0';
				} else {
					result[i++] = '.';
					if (charLength < nDigits) {
						int t = nDigits - charLength;
						System.arraycopy(digits, charLength, result, i, t);
						i += t;
					} else {
						result[i++] = '0';
					}
				}
			} else if (decExponent <= 0 && decExponent > -3) {
				result[i++] = '0';
				result[i++] = '.';
				if (decExponent != 0) {
					System.arraycopy(zero, 0, result, i, -decExponent);
					i -= decExponent;
				}
				System.arraycopy(digits, 0, result, i, nDigits);
				i += nDigits;
			} else {
				result[i++] = digits[0];
				result[i++] = '.';
				if (nDigits > 1) {
					System.arraycopy(digits, 1, result, i, nDigits - 1);
					i += nDigits - 1;
				} else {
					result[i++] = '0';
				}
				result[i++] = 'E';
				int e;
				if (decExponent <= 0) {
					result[i++] = '-';
					e = -decExponent + 1;
				} else {
					e = decExponent - 1;
				}
				// decExponent has 1, 2, or 3, digits
				if (e <= 9) {
					result[i++] = (char)(e + '0');
				} else if (e <= 99) {
					result[i++] = (char)(e / 10 + '0');
					result[i++] = (char)(e % 10 + '0');
				} else {
					result[i++] = (char)(e / 100 + '0');
					e %= 100;
					result[i++] = (char)(e / 10 + '0');
					result[i++] = (char)(e % 10 + '0');
				}
			}
		}
		return new String(result, 0, i);
	}

	public static FloatingDecimal
		readJavaFormatString(String in) {
		boolean isNegative = false;
		boolean signSeen = false;
		int decExp;
		char c;

		parseNumber:
			try {
			in = in.trim(); // don't fool around with white space.
			// throws NullPointerException if null
			int l = in.length();
			if (l == 0)throw new NumberFormatException("empty String");
			int i = 0;
			switch (c = in.charAt(i)) {
			case '-':
				isNegative = true;
				//FALLTHROUGH
			case '+':
				i++;
				signSeen = true;
			}

			// Check for NaN and Infinity strings
			c = in.charAt(i);
			if (c == 'N' || c == 'I') { // possible NaN or infinity
				boolean potentialNaN = false;
				char targetChars[] = null; // char arrary of "NaN" or "Infinity"

				if (c == 'N') {
					targetChars = notANumber;
					potentialNaN = true;
				} else {
					targetChars = infinity;
				}

				// assert(targetChars != null)

				// compare Input string to "NaN" or "Infinity"
				int j = 0;
				while (i < l && j < targetChars.length) {
					if (in.charAt(i) == targetChars[j]) {
						i++;
						j++;
					} else // something is amiss, throw exception
						break parseNumber;
				}

				// For the candidate string to be a NaN or infinity,
				// all characters in input string and target char[]
				// must be matched ==> j must equal targetChars.length
				// and i must equal l
				if ((j == targetChars.length) && (i == l)) { // return NaN or infinity
					return (potentialNaN ? new FloatingDecimal(Double.NaN) // NaN has no sign
							: new FloatingDecimal(isNegative ?
												  Double.NEGATIVE_INFINITY :
												  Double.POSITIVE_INFINITY));
				} else { // something went wrong, throw exception
					break parseNumber;
				}

			} // else carry on with original code as before

			char[] digits = new char[l];
			int nDigits = 0;
			boolean decSeen = false;
			int decPt = 0;
			int nLeadZero = 0;
			int nTrailZero = 0;
			digitLoop:while (i < l) {
				switch (c = in.charAt(i)) {
				case '0':
					if (nDigits > 0) {
						nTrailZero += 1;
					} else {
						nLeadZero += 1;
					}
					break; // out of switch.
				case '1':
				case '2':
				case '3':
				case '4':
				case '5':
				case '6':
				case '7':
				case '8':
				case '9':
					while (nTrailZero > 0) {
						digits[nDigits++] = '0';
						nTrailZero -= 1;
					}
					digits[nDigits++] = c;
					break; // out of switch.
				case '.':
					if (decSeen) {
						// already saw one ., this is the 2nd.
						throw new NumberFormatException("multiple points");
					}
					decPt = i;
					if (signSeen) {
						decPt -= 1;
					}
					decSeen = true;
					break; // out of switch.
				default:
					break digitLoop;
				}
				i++;
			}
			/*
			 * At this point, we've scanned all the digits and decimal
			 * point we're going to see. Trim off leading and trailing
			 * zeros, which will just confuse us later, and adjust
			 * our initial decimal exponent accordingly.
			 * To review:
			 * we have seen i total characters.
			 * nLeadZero of them were zeros before any other digits.
			 * nTrailZero of them were zeros after any other digits.
			 * if ( decSeen ), then a . was seen after decPt characters
			 * ( including leading zeros which have been discarded )
			 * nDigits characters were neither lead nor trailing
			 * zeros, nor point
			 */
			/*
			 * special hack: if we saw no non-zero digits, then the
			 * answer is zero!
			 * Unfortunately, we feel honor-bound to keep parsing!
			 */
			if (nDigits == 0) {
				digits = zero;
				nDigits = 1;
				if (nLeadZero == 0) {
					// we saw NO DIGITS AT ALL,
					// not even a crummy 0!
					// this is not allowed.
					break parseNumber; // go throw exception
				}

			}

			/* Our initial exponent is decPt, adjusted by the number of
			 * discarded zeros. Or, if there was no decPt,
			 * then its just nDigits adjusted by discarded trailing zeros.
			 */
			if (decSeen) {
				decExp = decPt - nLeadZero;
			} else {
				decExp = nDigits + nTrailZero;
			}

			/*
			 * Look for 'e' or 'E' and an optionally signed integer.
			 */
			if ((i < l) && ((c = in.charAt(i)) == 'e') || (c == 'E')) {
				int expSign = 1;
				int expVal = 0;
				int reallyBig = Integer.MAX_VALUE / 10;
				boolean expOverflow = false;
				switch (in.charAt(++i)) {
				case '-':
					expSign = -1;
					//FALLTHROUGH
				case '+':
					i++;
				}
				int expAt = i;
				expLoop:while (i < l) {
					if (expVal >= reallyBig) {
						// the next character will cause integer
						// overflow.
						expOverflow = true;
					}
					switch (c = in.charAt(i++)) {
					case '0':
					case '1':
					case '2':
					case '3':
					case '4':
					case '5':
					case '6':
					case '7':
					case '8':
					case '9':
						expVal = expVal * 10 + ((int)c - (int)'0');
						continue;
					default:
						i--; // back up.
						break expLoop; // stop parsing exponent.
					}
				}
				int expLimit = bigDecimalExponent + nDigits + nTrailZero;
				if (expOverflow || (expVal > expLimit)) {
					//
					// The intent here is to end up with
					// infinity or zero, as appropriate.
					// The reason for yielding such a small decExponent,
					// rather than something intuitive such as
					// expSign*Integer.MAX_VALUE, is that this value
					// is subject to further manipulation in
					// doubleValue() and floatValue(), and I don't want
					// it to be able to cause overflow there!
					// (The only way we can get into trouble here is for
					// really outrageous nDigits+nTrailZero, such as 2 billion. )
					//
					decExp = expSign * expLimit;
				} else {
					// this should not overflow, since we tested
					// for expVal > (MAX+N), where N >= abs(decExp)
					decExp = decExp + expSign * expVal;
				}

				// if we saw something not a digit ( or end of string )
				// after the [Ee][+-], without seeing any digits at all
				// this is certainly an error. If we saw some digits,
				// but then some trailing garbage, that might be ok.
				// so we just fall through in that case.
				// HUMBUG
				if (i == expAt)
					break parseNumber; // certainly bad
			}
			/*
			 * We parsed everything we could.
			 * If there are leftovers, then this is not good input!
			 */
			if (i < l &&
				((i != l - 1) ||
				 (in.charAt(i) != 'f' &&
				  in.charAt(i) != 'F' &&
				  in.charAt(i) != 'd' &&
				  in.charAt(i) != 'D'))) {
				break parseNumber; // go throw exception
			}

			return new FloatingDecimal(isNegative, decExp, digits, nDigits, false);
		} catch (StringIndexOutOfBoundsException e) {}

		return null;
	}

	public static FloatingDecimal readJavaFormatString(byte []in, int i, int end) {
		int start = i;
		boolean isNegative = false;
		boolean signSeen = false;
		int decExp;
		char c;

		parseNumber:
		try {
			// throws NullPointerException if null
			switch (c = (char)in[i]) {
			case '-':
				isNegative = true;
				//FALLTHROUGH
			case '+':
				i++;
				signSeen = true;
			}

			// Check for NaN and Infinity strings
			c = (char)in[i];
			if (c == 'N' || c == 'I') { // possible NaN or infinity
				boolean potentialNaN = false;
				char targetChars[] = null; // char arrary of "NaN" or "Infinity"

				if (c == 'N') {
					targetChars = notANumber;
					potentialNaN = true;
				} else {
					targetChars = infinity;
				}

				// assert(targetChars != null)

				// compare Input string to "NaN" or "Infinity"
				int j = 0;
				while (i < end && j < targetChars.length) {
					if (in[i] == targetChars[j]) {
						i++;
						j++;
					} else // something is amiss, throw exception
						break parseNumber;
				}

				// For the candidate string to be a NaN or infinity,
				// all characters in input string and target char[]
				// must be matched ==> j must equal targetChars.length
				// and i must equal l
				if ((j == targetChars.length) && (i == end)) { // return NaN or infinity
					return (potentialNaN ? new FloatingDecimal(Double.NaN) // NaN has no sign
							: new FloatingDecimal(isNegative ?
												  Double.NEGATIVE_INFINITY :
												  Double.POSITIVE_INFINITY));
				} else { // something went wrong, throw exception
					break parseNumber;
				}

			} // else carry on with original code as before

			char[] digits = new char[end - i];
			int nDigits = 0;
			boolean decSeen = false;
			int decPt = 0;
			int nLeadZero = 0;
			int nTrailZero = 0;
			digitLoop:
			while (i < end) {
				switch (c = (char)in[i]) {
				case '0':
					if (nDigits > 0) {
						nTrailZero += 1;
					} else {
						nLeadZero += 1;
					}
					break; // out of switch.
				case '1':
				case '2':
				case '3':
				case '4':
				case '5':
				case '6':
				case '7':
				case '8':
				case '9':
					while (nTrailZero > 0) {
						digits[nDigits++] = '0';
						nTrailZero -= 1;
					}
					digits[nDigits++] = c;
					break; // out of switch.
				case '.':
					if (decSeen) {
						// already saw one ., this is the 2nd.
						throw new NumberFormatException("multiple points");
					}
					decPt = i - start;
					if (signSeen) {
						decPt -= 1;
					}
					decSeen = true;
					break; // out of switch.
				default:
					break digitLoop;
				}
				i++;
			}
			/*
			 * At this point, we've scanned all the digits and decimal
			 * point we're going to see. Trim off leading and trailing
			 * zeros, which will just confuse us later, and adjust
			 * our initial decimal exponent accordingly.
			 * To review:
			 * we have seen i total characters.
			 * nLeadZero of them were zeros before any other digits.
			 * nTrailZero of them were zeros after any other digits.
			 * if ( decSeen ), then a . was seen after decPt characters
			 * ( including leading zeros which have been discarded )
			 * nDigits characters were neither lead nor trailing
			 * zeros, nor point
			 */
			/*
			 * special hack: if we saw no non-zero digits, then the
			 * answer is zero!
			 * Unfortunately, we feel honor-bound to keep parsing!
			 */
			if (nDigits == 0) {
				digits = zero;
				nDigits = 1;
				if (nLeadZero == 0) {
					// we saw NO DIGITS AT ALL,
					// not even a crummy 0!
					// this is not allowed.
					break parseNumber; // go throw exception
				}

			}

			/* Our initial exponent is decPt, adjusted by the number of
			 * discarded zeros. Or, if there was no decPt,
			 * then its just nDigits adjusted by discarded trailing zeros.
			 */
			if (decSeen) {
				decExp = decPt - nLeadZero;
			} else {
				decExp = nDigits + nTrailZero;
			}

			/*
			 * Look for 'e' or 'E' and an optionally signed integer.
			 */
			if ((i < end) && ((c = (char)in[i]) == 'e') || (c == 'E')) {
				int expSign = 1;
				int expVal = 0;
				int reallyBig = Integer.MAX_VALUE / 10;
				boolean expOverflow = false;
				switch (in[++i]) {
				case '-':
					expSign = -1;
					//FALLTHROUGH
				case '+':
					i++;
				}
				int expAt = i;
				expLoop:
				while (i < end) {
					if (expVal >= reallyBig) {
						// the next character will cause integer
						// overflow.
						expOverflow = true;
					}
					switch (c = (char)in[i++]) {
					case '0':
					case '1':
					case '2':
					case '3':
					case '4':
					case '5':
					case '6':
					case '7':
					case '8':
					case '9':
						expVal = expVal * 10 + ((int)c - (int)'0');
						continue;
					default:
						i--; // back up.
						break expLoop; // stop parsing exponent.
					}
				}
				int expLimit = bigDecimalExponent + nDigits + nTrailZero;
				if (expOverflow || (expVal > expLimit)) {
					//
					// The intent here is to end up with
					// infinity or zero, as appropriate.
					// The reason for yielding such a small decExponent,
					// rather than something intuitive such as
					// expSign*Integer.MAX_VALUE, is that this value
					// is subject to further manipulation in
					// doubleValue() and floatValue(), and I don't want
					// it to be able to cause overflow there!
					// (The only way we can get into trouble here is for
					// really outrageous nDigits+nTrailZero, such as 2 billion. )
					//
					decExp = expSign * expLimit;
				} else {
					// this should not overflow, since we tested
					// for expVal > (MAX+N), where N >= abs(decExp)
					decExp = decExp + expSign * expVal;
				}

				// if we saw something not a digit ( or end of string )
				// after the [Ee][+-], without seeing any digits at all
				// this is certainly an error. If we saw some digits,
				// but then some trailing garbage, that might be ok.
				// so we just fall through in that case.
				// HUMBUG
				if (i == expAt)
					break parseNumber; // certainly bad
			}
			/*
			 * We parsed everything we could.
			 * If there are leftovers, then this is not good input!
			 */
			if (i < end &&
				((i != end - 1) ||
				 (in[i] != 'f' &&
				  in[i] != 'F' &&
				  in[i] != 'd' &&
				  in[i] != 'D'))) {
				break parseNumber; // go throw exception
			}

			return new FloatingDecimal(isNegative, decExp, digits, nDigits, false);
		} catch (StringIndexOutOfBoundsException e) {}

		return null;
	}

	/*
	 * Take a FloatingDecimal, which we presumably just scanned in,
	 * and find out what its value is, as a double.
	 *
	 * AS A SIDE EFFECT, SET roundDir TO INDICATE PREFERRED
	 * ROUNDING DIRECTION in case the result is really destined
	 * for a single-precision float.
	 */

	public double
		doubleValue() {
		int kDigits = Math.min(nDigits, maxDecimalDigits + 1);
		long lValue;
		double dValue;
		double rValue, tValue;

		// First, check for NaN and Infinity values
		if (digits == infinity || digits == notANumber) {
			if (digits == notANumber)
				return Double.NaN;
			else
				return (isNegative ? Double.NEGATIVE_INFINITY :
						Double.POSITIVE_INFINITY);
		} else {
			roundDir = 0;

			/*
			 * convert the lead kDigits to a long integer.
			 */
			// (special performance hack: start to do it using int)
			int iValue = (int)digits[0] - (int)'0';
			int iDigits = Math.min(kDigits, intDecimalDigits);
			for (int i = 1; i < iDigits; i++) {
				iValue = iValue * 10 + (int)digits[i] - (int)'0';
			}
			lValue = (long)iValue;
			for (int i = iDigits; i < kDigits; i++) {
				lValue = lValue * 10L + (long)((int)digits[i] - (int)'0');
			}
			dValue = (double)lValue;
			int exp = decExponent - kDigits;
			/*
			 * lValue now contains a long integer with the value of
			 * the first kDigits digits of the number.
			 * dValue contains the (double) of the same.
			 */

			if (nDigits <= maxDecimalDigits) {
				/*
				 * possibly an easy case.
				 * We know that the digits can be represented
				 * exactly. And if the exponent isn't too outrageous,
				 * the whole thing can be done with one operation,
				 * thus one rounding error.
				 * Note that all our constructors trim all leading and
				 * trailing zeros, so simple values (including zero)
				 * will always end up here
				 */
				if (exp == 0 || dValue == 0.0)
					return (isNegative) ? -dValue : dValue; // small floating integer
				else if (exp >= 0) {
					if (exp <= maxSmallTen) {
						/*
						 * Can get the answer with one operation,
						 * thus one roundoff.
						 */
						rValue = dValue * small10pow[exp];
						if (mustSetRoundDir) {
							tValue = rValue / small10pow[exp];
							roundDir = (tValue == dValue) ? 0
								: (tValue < dValue) ? 1
								: -1;
						}
						return (isNegative) ? -rValue : rValue;
					}
					int slop = maxDecimalDigits - kDigits;
					if (exp <= maxSmallTen + slop) {
						/*
						 * We can multiply dValue by 10^(slop)
						 * and it is still "small" and exact.
						 * Then we can multiply by 10^(exp-slop)
						 * with one rounding.
						 */
						dValue *= small10pow[slop];
						rValue = dValue * small10pow[exp - slop];

						if (mustSetRoundDir) {
							tValue = rValue / small10pow[exp - slop];
							roundDir = (tValue == dValue) ? 0
								: (tValue < dValue) ? 1
								: -1;
						}
						return (isNegative) ? -rValue : rValue;
					}
					/*
					 * Else we have a hard case with a positive exp.
					 */
				} else {
					if (exp >= -maxSmallTen) {
						/*
						 * Can get the answer in one division.
						 */
						rValue = dValue / small10pow[ -exp];
						tValue = rValue * small10pow[ -exp];
						if (mustSetRoundDir) {
							roundDir = (tValue == dValue) ? 0
								: (tValue < dValue) ? 1
								: -1;
						}
						return (isNegative) ? -rValue : rValue;
					}
					/*
					 * Else we have a hard case with a negative exp.
					 */
				}
			}

			/*
			 * Harder cases:
			 * The sum of digits plus exponent is greater than
			 * what we think we can do with one error.
			 *
			 * Start by approximating the right answer by,
			 * naively, scaling by powers of 10.
			 */
			if (exp > 0) {
				if (decExponent > maxDecimalExponent + 1) {
					/*
					 * Lets face it. This is going to be
					 * Infinity. Cut to the chase.
					 */
					return (isNegative) ? Double.NEGATIVE_INFINITY :
						Double.POSITIVE_INFINITY;
				}
				if ((exp & 15) != 0) {
					dValue *= small10pow[exp & 15];
				}
				if ((exp >>= 4) != 0) {
					int j;
					for (j = 0; exp > 1; j++, exp >>= 1) {
						if ((exp & 1) != 0)
							dValue *= big10pow[j];
					}
					/*
					 * The reason for the weird exp > 1 condition
					 * in the above loop was so that the last multiply
					 * would get unrolled. We handle it here.
					 * It could overflow.
					 */
					double t = dValue * big10pow[j];
					if (Double.isInfinite(t)) {
						/*
						 * It did overflow.
						 * Look more closely at the result.
						 * If the exponent is just one too large,
						 * then use the maximum finite as our estimate
						 * value. Else call the result infinity
						 * and punt it.
						 * ( I presume this could happen because
						 * rounding forces the result here to be
						 * an ULP or two larger than
						 * Double.MAX_VALUE ).
						 */
						t = dValue / 2.0;
						t *= big10pow[j];
						if (Double.isInfinite(t)) {
							return (isNegative) ? Double.NEGATIVE_INFINITY :
								Double.POSITIVE_INFINITY;
						}
						t = Double.MAX_VALUE;
					}
					dValue = t;
				}
			} else if (exp < 0) {
				exp = -exp;
				if (decExponent < minDecimalExponent - 1) {
					/*
					 * Lets face it. This is going to be
					 * zero. Cut to the chase.
					 */
					return (isNegative) ? -0.0 : 0.0;
				}
				if ((exp & 15) != 0) {
					dValue /= small10pow[exp & 15];
				}
				if ((exp >>= 4) != 0) {
					int j;
					for (j = 0; exp > 1; j++, exp >>= 1) {
						if ((exp & 1) != 0)
							dValue *= tiny10pow[j];
					}
					/*
					 * The reason for the weird exp > 1 condition
					 * in the above loop was so that the last multiply
					 * would get unrolled. We handle it here.
					 * It could underflow.
					 */
					double t = dValue * tiny10pow[j];
					if (t == 0.0) {
						/*
						 * It did underflow.
						 * Look more closely at the result.
						 * If the exponent is just one too small,
						 * then use the minimum finite as our estimate
						 * value. Else call the result 0.0
						 * and punt it.
						 * ( I presume this could happen because
						 * rounding forces the result here to be
						 * an ULP or two less than
						 * Double.MIN_VALUE ).
						 */
						t = dValue * 2.0;
						t *= tiny10pow[j];
						if (t == 0.0) {
							return (isNegative) ? -0.0 : 0.0;
						}
						t = Double.MIN_VALUE;
					}
					dValue = t;
				}
			}

			/*
			 * dValue is now approximately the result.
			 * The hard part is adjusting it, by comparison
			 * with FDBigInt arithmetic.
			 * Formulate the EXACT big-number result as
			 * bigD0 * 10^exp
			 */
			FDBigInt bigD0 = new FDBigInt(lValue, digits, kDigits, nDigits);
			exp = decExponent - nDigits;

			correctionLoop:while (true) {
				/* AS A SIDE EFFECT, THIS METHOD WILL SET THE INSTANCE VARIABLES
				 * bigIntExp and bigIntNBits
				 */
				FDBigInt bigB = doubleToBigInt(dValue);

				/*
				 * Scale bigD, bigB appropriately for
				 * big-integer operations.
				 * Naively, we multipy by powers of ten
				 * and powers of two. What we actually do
				 * is keep track of the powers of 5 and
				 * powers of 2 we would use, then factor out
				 * common divisors before doing the work.
				 */
				int B2, B5; // powers of 2, 5 in bigB
				int D2, D5; // powers of 2, 5 in bigD
				int Ulp2; // powers of 2 in halfUlp.
				if (exp >= 0) {
					B2 = B5 = 0;
					D2 = D5 = exp;
				} else {
					B2 = B5 = -exp;
					D2 = D5 = 0;
				}
				if (bigIntExp >= 0) {
					B2 += bigIntExp;
				} else {
					D2 -= bigIntExp;
				}
				Ulp2 = B2;
				// shift bigB and bigD left by a number s. t.
				// halfUlp is still an integer.
				int hulpbias;
				if (bigIntExp + bigIntNBits <= -expBias + 1) {
					// This is going to be a denormalized number
					// (if not actually zero).
					// half an ULP is at 2^-(expBias+expShift+1)
					hulpbias = bigIntExp + expBias + expShift;
				} else {
					hulpbias = expShift + 2 - bigIntNBits;
				}
				B2 += hulpbias;
				D2 += hulpbias;
				// if there are common factors of 2, we might just as well
				// factor them out, as they add nothing useful.
				int common2 = Math.min(B2, Math.min(D2, Ulp2));
				B2 -= common2;
				D2 -= common2;
				Ulp2 -= common2;
				// do multiplications by powers of 5 and 2
				bigB = multPow52(bigB, B5, B2);
				FDBigInt bigD = multPow52(new FDBigInt(bigD0), D5, D2);
				//
				// to recap:
				// bigB is the scaled-big-int version of our floating-point
				// candidate.
				// bigD is the scaled-big-int version of the exact value
				// as we understand it.
				// halfUlp is 1/2 an ulp of bigB, except for special cases
				// of exact powers of 2
				//
				// the plan is to compare bigB with bigD, and if the difference
				// is less than halfUlp, then we're satisfied. Otherwise,
				// use the ratio of difference to halfUlp to calculate a fudge
				// factor to add to the floating value, then go 'round again.
				//
				FDBigInt diff;
				int cmpResult;
				boolean overvalue;
				if ((cmpResult = bigB.cmp(bigD)) > 0) {
					overvalue = true; // our candidate is too big.
					diff = bigB.sub(bigD);
					if ((bigIntNBits == 1) && (bigIntExp > -expBias)) {
						// candidate is a normalized exact power of 2 and
						// is too big. We will be subtracting.
						// For our purposes, ulp is the ulp of the
						// next smaller range.
						Ulp2 -= 1;
						if (Ulp2 < 0) {
							// rats. Cannot de-scale ulp this far.
							// must scale diff in other direction.
							Ulp2 = 0;
							diff.lshiftMe(1);
						}
					}
				} else if (cmpResult < 0) {
					overvalue = false; // our candidate is too small.
					diff = bigD.sub(bigB);
				} else {
					// the candidate is exactly right!
					// this happens with surprising fequency
					break correctionLoop;
				}
				FDBigInt halfUlp = constructPow52(B5, Ulp2);
				if ((cmpResult = diff.cmp(halfUlp)) < 0) {
					// difference is small.
					// this is close enough
					roundDir = overvalue ? -1 : 1;
					break correctionLoop;
				} else if (cmpResult == 0) {
					// difference is exactly half an ULP
					// round to some other value maybe, then finish
					dValue += 0.5 * ulp(dValue, overvalue);
					// should check for bigIntNBits == 1 here??
					roundDir = overvalue ? -1 : 1;
					break correctionLoop;
				} else {
					// difference is non-trivial.
					// could scale addend by ratio of difference to
					// halfUlp here, if we bothered to compute that difference.
					// Most of the time ( I hope ) it is about 1 anyway.
					dValue += ulp(dValue, overvalue);
					if (dValue == 0.0 || dValue == Double.POSITIVE_INFINITY)
						break correctionLoop; // oops. Fell off end of range.
					continue; // try again.
				}

			}
			return (isNegative) ? -dValue : dValue;
		}
	}

	/*
	 * Take a FloatingDecimal, which we presumably just scanned in,
	 * and find out what its value is, as a float.
	 * This is distinct from doubleValue() to avoid the extremely
	 * unlikely case of a double rounding error, wherein the converstion
	 * to double has one rounding error, and the conversion of that double
	 * to a float has another rounding error, IN THE WRONG DIRECTION,
	 * ( because of the preference to a zero low-order bit ).
	 */

	public float
		floatValue() {
		int kDigits = Math.min(nDigits, singleMaxDecimalDigits + 1);
		int iValue;
		float fValue;

		// First, check for NaN and Infinity values
		if (digits == infinity || digits == notANumber) {
			if (digits == notANumber)
				return Float.NaN;
			else
				return (isNegative ? Float.NEGATIVE_INFINITY :
						Float.POSITIVE_INFINITY);
		} else {
			/*
			 * convert the lead kDigits to an integer.
			 */
			iValue = (int)digits[0] - (int)'0';
			for (int i = 1; i < kDigits; i++) {
				iValue = iValue * 10 + (int)digits[i] - (int)'0';
			}
			fValue = (float)iValue;
			int exp = decExponent - kDigits;
			/*
			 * iValue now contains an integer with the value of
			 * the first kDigits digits of the number.
			 * fValue contains the (float) of the same.
			 */

			if (nDigits <= singleMaxDecimalDigits) {
				/*
				 * possibly an easy case.
				 * We know that the digits can be represented
				 * exactly. And if the exponent isn't too outrageous,
				 * the whole thing can be done with one operation,
				 * thus one rounding error.
				 * Note that all our constructors trim all leading and
				 * trailing zeros, so simple values (including zero)
				 * will always end up here.
				 */
				if (exp == 0 || fValue == 0.0f)
					return (isNegative) ? -fValue : fValue; // small floating integer
				else if (exp >= 0) {
					if (exp <= singleMaxSmallTen) {
						/*
						 * Can get the answer with one operation,
						 * thus one roundoff.
						 */
						fValue *= singleSmall10pow[exp];
						return (isNegative) ? -fValue : fValue;
					}
					int slop = singleMaxDecimalDigits - kDigits;
					if (exp <= singleMaxSmallTen + slop) {
						/*
						 * We can multiply dValue by 10^(slop)
						 * and it is still "small" and exact.
						 * Then we can multiply by 10^(exp-slop)
						 * with one rounding.
						 */
						fValue *= singleSmall10pow[slop];
						fValue *= singleSmall10pow[exp - slop];
						return (isNegative) ? -fValue : fValue;
					}
					/*
					 * Else we have a hard case with a positive exp.
					 */
				} else {
					if (exp >= -singleMaxSmallTen) {
						/*
						 * Can get the answer in one division.
						 */
						fValue /= singleSmall10pow[ -exp];
						return (isNegative) ? -fValue : fValue;
					}
					/*
					 * Else we have a hard case with a negative exp.
					 */
				}
			} else if ((decExponent >= nDigits) &&
					   (nDigits + decExponent <= maxDecimalDigits)) {
				/*
				 * In double-precision, this is an exact floating integer.
				 * So we can compute to double, then shorten to float
				 * with one round, and get the right answer.
				 *
				 * First, finish accumulating digits.
				 * Then convert that integer to a double, multiply
				 * by the appropriate power of ten, and convert to float.
				 */
				long lValue = (long)iValue;
				for (int i = kDigits; i < nDigits; i++) {
					lValue = lValue * 10L + (long)((int)digits[i] - (int)'0');
				}
				double dValue = (double)lValue;
				exp = decExponent - nDigits;
				dValue *= small10pow[exp];
				fValue = (float)dValue;
				return (isNegative) ? -fValue : fValue;

			}
			/*
			 * Harder cases:
			 * The sum of digits plus exponent is greater than
			 * what we think we can do with one error.
			 *
			 * Start by weeding out obviously out-of-range
			 * results, then convert to double and go to
			 * common hard-case code.
			 */
			if (decExponent > singleMaxDecimalExponent + 1) {
				/*
				 * Lets face it. This is going to be
				 * Infinity. Cut to the chase.
				 */
				return (isNegative) ? Float.NEGATIVE_INFINITY :
					Float.POSITIVE_INFINITY;
			} else if (decExponent < singleMinDecimalExponent - 1) {
				/*
				 * Lets face it. This is going to be
				 * zero. Cut to the chase.
				 */
				return (isNegative) ? -0.0f : 0.0f;
			}

			/*
			 * Here, we do 'way too much work, but throwing away
			 * our partial results, and going and doing the whole
			 * thing as double, then throwing away half the bits that computes
			 * when we convert back to float.
			 *
			 * The alternative is to reproduce the whole multiple-precision
			 * algorythm for float precision, or to try to parameterize it
			 * for common usage. The former will take about 400 lines of code,
			 * and the latter I tried without success. Thus the semi-hack
			 * answer here.
			 */
			mustSetRoundDir = true;
			double dValue = doubleValue();
			return stickyRound(dValue);
		}
	}

	/*
	 * All the positive powers of 10 that can be
	 * represented exactly in double/float.
	 */
	private static final double small10pow[] = {
		1.0e0,
		1.0e1, 1.0e2, 1.0e3, 1.0e4, 1.0e5,
		1.0e6, 1.0e7, 1.0e8, 1.0e9, 1.0e10,
		1.0e11, 1.0e12, 1.0e13, 1.0e14, 1.0e15,
		1.0e16, 1.0e17, 1.0e18, 1.0e19, 1.0e20,
		1.0e21, 1.0e22
	};

	private static final float singleSmall10pow[] = {
		1.0e0f,
		1.0e1f, 1.0e2f, 1.0e3f, 1.0e4f, 1.0e5f,
		1.0e6f, 1.0e7f, 1.0e8f, 1.0e9f, 1.0e10f
	};

	private static final double big10pow[] = {
		1e16, 1e32, 1e64, 1e128, 1e256};
	private static final double tiny10pow[] = {
		1e-16, 1e-32, 1e-64, 1e-128, 1e-256};

	private static final int maxSmallTen = small10pow.length - 1;
	private static final int singleMaxSmallTen = singleSmall10pow.length - 1;

	private static final int small5pow[] = {
		1,
		5,
		5 * 5,
		5 * 5 * 5,
		5 * 5 * 5 * 5,
		5 * 5 * 5 * 5 * 5,
		5 * 5 * 5 * 5 * 5 * 5,
		5 * 5 * 5 * 5 * 5 * 5 * 5,
		5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5
	};

	private static final long long5pow[] = {
		1L,
		5L,
		5L * 5,
		5L * 5 * 5,
		5L * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *
		5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *
		5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *
		5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *
		5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *
		5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *
		5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *
		5 * 5 * 5 * 5 * 5 * 5 * 5,
		5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *
		5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
	};

	// approximately ceil( log2( long5pow[i] ) )
	private static final int n5bits[] = {
		0,
		3,
		5,
		7,
		10,
		12,
		14,
		17,
		19,
		21,
		24,
		26,
		28,
		31,
		33,
		35,
		38,
		40,
		42,
		45,
		47,
		49,
		52,
		54,
		56,
		59,
		61,
	};

	private static final char infinity[] = {'I', 'n', 'f', 'i', 'n', 'i', 't',
		'y'};
	private static final char notANumber[] = {'N', 'a', 'N'};
	private static final char zero[] = {'0', '0', '0', '0', '0', '0', '0', '0'};

}

/*
 * A really, really simple bigint package
 * tailored to the needs of floating base conversion.
 */
class FDBigInt {
	int nWords; // number of words used
	int data[]; // value: data[0] is least significant

	public FDBigInt(int v) {
		nWords = 1;
		data = new int[1];
		data[0] = v;
	}

	public FDBigInt(long v) {
		data = new int[2];
		data[0] = (int)v;
		data[1] = (int)(v >>> 32);
		nWords = (data[1] == 0) ? 1 : 2;
	}

	public FDBigInt(FDBigInt other) {
		data = new int[nWords = other.nWords];
		System.arraycopy(other.data, 0, data, 0, nWords);
	}

	private FDBigInt(int[] d, int n) {
		data = d;
		nWords = n;
	}

	public FDBigInt(long seed, char digit[], int nd0, int nd) {
		int n = (nd + 8) / 9; // estimate size needed.
		if (n < 2)n = 2;
		data = new int[n]; // allocate enough space
		data[0] = (int)seed; // starting value
		data[1] = (int)(seed >>> 32);
		nWords = (data[1] == 0) ? 1 : 2;
		int i = nd0;
		int limit = nd - 5; // slurp digits 5 at a time.
		int v;
		while (i < limit) {
			int ilim = i + 5;
			v = (int)digit[i++] - (int)'0';
			while (i < ilim) {
				v = 10 * v + (int)digit[i++] - (int)'0';
			}
			multaddMe(100000, v); // ... where 100000 is 10^5.
		}
		int factor = 1;
		v = 0;
		while (i < nd) {
			v = 10 * v + (int)digit[i++] - (int)'0';
			factor *= 10;
		}
		if (factor != 1) {
			multaddMe(factor, v);
		}
	}

	/*
	 * Left shift by c bits.
	 * Shifts this in place.
	 */
	public void
		lshiftMe(int c) throws IllegalArgumentException {
		if (c <= 0) {
			if (c == 0)
				return; // silly.
			else
				throw new IllegalArgumentException("negative shift count");
		}
		int wordcount = c >> 5;
		int bitcount = c & 0x1f;
		int anticount = 32 - bitcount;
		int t[] = data;
		int s[] = data;
		if (nWords + wordcount + 1 > t.length) {
			// reallocate.
			t = new int[nWords + wordcount + 1];
		}
		int target = nWords + wordcount;
		int src = nWords - 1;
		if (bitcount == 0) {
			// special hack, since an anticount of 32 won't go!
			System.arraycopy(s, 0, t, wordcount, nWords);
			target = wordcount - 1;
		} else {
			t[target--] = s[src] >>> anticount;
			while (src >= 1) {
				t[target--] = (s[src] << bitcount) | (s[--src] >>> anticount);
			}
			t[target--] = s[src] << bitcount;
		} while (target >= 0) {
			t[target--] = 0;
		}
		data = t;
		nWords += wordcount + 1;
		// may have constructed high-order word of 0.
		// if so, trim it
		while (nWords > 1 && data[nWords - 1] == 0)
			nWords--;
	}

	/*
	 * normalize this number by shifting until
	 * the MSB of the number is at 0x08000000.
	 * This is in preparation for quoRemIteration, below.
	 * The idea is that, to make division easier, we want the
	 * divisor to be "normalized" -- usually this means shifting
	 * the MSB into the high words sign bit. But because we know that
	 * the quotient will be 0 < q < 10, we would like to arrange that
	 * the dividend not span up into another word of precision.
	 * (This needs to be explained more clearly!)
	 */
	public int
		normalizeMe() throws IllegalArgumentException {
		int src;
		int wordcount = 0;
		int bitcount = 0;
		int v = 0;
		for (src = nWords - 1; src >= 0 && (v = data[src]) == 0; src--) {
			wordcount += 1;
		}
		if (src < 0) {
			// oops. Value is zero. Cannot normalize it!
			throw new IllegalArgumentException("zero value");
		}
		/*
		 * In most cases, we assume that wordcount is zero. This only
		 * makes sense, as we try not to maintain any high-order
		 * words full of zeros. In fact, if there are zeros, we will
		 * simply SHORTEN our number at this point. Watch closely...
		 */
		nWords -= wordcount;
		/*
		 * Compute how far left we have to shift v s.t. its highest-
		 * order bit is in the right place. Then call lshiftMe to
		 * do the work.
		 */
		if ((v & 0xf0000000) != 0) {
			// will have to shift up into the next word.
			// too bad.
			for (bitcount = 32; (v & 0xf0000000) != 0; bitcount--)
				v >>>= 1;
		} else {
			while (v <= 0x000fffff) {
				// hack: byte-at-a-time shifting
				v <<= 8;
				bitcount += 8;
			} while (v <= 0x07ffffff) {
				v <<= 1;
				bitcount += 1;
			}
		}
		if (bitcount != 0)
			lshiftMe(bitcount);
		return bitcount;
	}

	/*
	 * Multiply a FDBigInt by an int.
	 * Result is a new FDBigInt.
	 */
	public FDBigInt
		mult(int iv) {
		long v = iv;
		int r[];
		long p;

		// guess adequate size of r.
		r = new int[(v * ((long)data[nWords - 1] & 0xffffffffL) > 0xfffffffL) ?
			nWords + 1 : nWords];
		p = 0L;
		for (int i = 0; i < nWords; i++) {
			p += v * ((long)data[i] & 0xffffffffL);
			r[i] = (int)p;
			p >>>= 32;
		}
		if (p == 0L) {
			return new FDBigInt(r, nWords);
		} else {
			r[nWords] = (int)p;
			return new FDBigInt(r, nWords + 1);
		}
	}

	/*
	 * Multiply a FDBigInt by an int and add another int.
	 * Result is computed in place.
	 * Hope it fits!
	 */
	public void
		multaddMe(int iv, int addend) {
		long v = iv;
		long p;

		// unroll 0th iteration, doing addition.
		p = v * ((long)data[0] & 0xffffffffL) + ((long)addend & 0xffffffffL);
		data[0] = (int)p;
		p >>>= 32;
		for (int i = 1; i < nWords; i++) {
			p += v * ((long)data[i] & 0xffffffffL);
			data[i] = (int)p;
			p >>>= 32;
		}
		if (p != 0L) {
			data[nWords] = (int)p; // will fail noisily if illegal!
			nWords++;
		}
	}

	/*
	 * Multiply a FDBigInt by another FDBigInt.
	 * Result is a new FDBigInt.
	 */
	public FDBigInt
		mult(FDBigInt other) {
		// crudely guess adequate size for r
		int r[] = new int[nWords + other.nWords];
		int i;
		// I think I am promised zeros...

		for (i = 0; i < this.nWords; i++) {
			long v = (long)this.data[i] & 0xffffffffL; // UNSIGNED CONVERSION
			long p = 0L;
			int j;
			for (j = 0; j < other.nWords; j++) {
				p += ((long)r[i + j] & 0xffffffffL) +
					v * ((long)other.data[j] & 0xffffffffL); // UNSIGNED CONVERSIONS ALL 'ROUND.
				r[i + j] = (int)p;
				p >>>= 32;
			}
			r[i + j] = (int)p;
		}
		// compute how much of r we actually needed for all that.
		for (i = r.length - 1; i > 0; i--)
			if (r[i] != 0)
				break;
		return new FDBigInt(r, i + 1);
	}

	/*
	 * Add one FDBigInt to another. Return a FDBigInt
	 */
	public FDBigInt
		add(FDBigInt other) {
		int i;
		int a[], b[];
		int n, m;
		long c = 0L;
		// arrange such that a.nWords >= b.nWords;
		// n = a.nWords, m = b.nWords
		if (this.nWords >= other.nWords) {
			a = this.data;
			n = this.nWords;
			b = other.data;
			m = other.nWords;
		} else {
			a = other.data;
			n = other.nWords;
			b = this.data;
			m = this.nWords;
		}
		int r[] = new int[n];
		for (i = 0; i < n; i++) {
			c += (long)a[i] & 0xffffffffL;
			if (i < m) {
				c += (long)b[i] & 0xffffffffL;
			}
			r[i] = (int)c;
			c >>= 32; // signed shift.
		}
		if (c != 0L) {
			// oops -- carry out -- need longer result.
			int s[] = new int[r.length + 1];
			System.arraycopy(r, 0, s, 0, r.length);
			s[i++] = (int)c;
			return new FDBigInt(s, i);
		}
		return new FDBigInt(r, i);
	}

	/*
	 * Subtract one FDBigInt from another. Return a FDBigInt
	 * Assert that the result is positive.
	 */
	public FDBigInt
		sub(FDBigInt other) {
		int r[] = new int[this.nWords];
		int i;
		int n = this.nWords;
		int m = other.nWords;
		int nzeros = 0;
		long c = 0L;
		for (i = 0; i < n; i++) {
			c += (long)this.data[i] & 0xffffffffL;
			if (i < m) {
				c -= (long)other.data[i] & 0xffffffffL;
			}
			if ((r[i] = (int)c) == 0)
				nzeros++;
			else
				nzeros = 0;
			c >>= 32; // signed shift.
		}
		if (c != 0L)
			throw new RuntimeException(
				"Assertion botch: borrow out of subtract");
		while (i < m)
			if (other.data[i++] != 0)
				throw new RuntimeException(
					"Assertion botch: negative result of subtract");
		return new FDBigInt(r, n - nzeros);
	}

	/*
	 * Compare FDBigInt with another FDBigInt. Return an integer
	 * >0: this > other
	 *  0: this == other
	 * <0: this < other
	 */
	public int
		cmp(FDBigInt other) {
		int i;
		if (this.nWords > other.nWords) {
			// if any of my high-order words is non-zero,
			// then the answer is evident
			int j = other.nWords - 1;
			for (i = this.nWords - 1; i > j; i--)
				if (this.data[i] != 0)return 1;
		} else if (this.nWords < other.nWords) {
			// if any of other's high-order words is non-zero,
			// then the answer is evident
			int j = this.nWords - 1;
			for (i = other.nWords - 1; i > j; i--)
				if (other.data[i] != 0)return -1;
		} else {
			i = this.nWords - 1;
		}
		for (; i > 0; i--)
			if (this.data[i] != other.data[i])
				break;
		// careful! want unsigned compare!
		// use brute force here.
		int a = this.data[i];
		int b = other.data[i];
		if (a < 0) {
			// a is really big, unsigned
			if (b < 0) {
				return a - b; // both big, negative
			} else {
				return 1; // b not big, answer is obvious;
			}
		} else {
			// a is not really big
			if (b < 0) {
				// but b is really big
				return -1;
			} else {
				return a - b;
			}
		}
	}

	/*
	 * Compute
	 * q = (int)( this / S )
	 * this = 10 * ( this mod S )
	 * Return q.
	 * This is the iteration step of digit development for output.
	 * We assume that S has been normalized, as above, and that
	 * "this" has been lshift'ed accordingly.
	 * Also assume, of course, that the result, q, can be expressed
	 * as an integer, 0 <= q < 10.
	 */
	public int
		quoRemIteration(FDBigInt S) throws IllegalArgumentException {
		// ensure that this and S have the same number of
		// digits. If S is properly normalized and q < 10 then
		// this must be so.
		if (nWords != S.nWords) {
			throw new IllegalArgumentException("disparate values");
		}
		// estimate q the obvious way. We will usually be
		// right. If not, then we're only off by a little and
		// will re-add.
		int n = nWords - 1;
		long q = ((long)data[n] & 0xffffffffL) / (long)S.data[n];
		long diff = 0L;
		for (int i = 0; i <= n; i++) {
			diff += ((long)data[i] & 0xffffffffL) -
				q * ((long)S.data[i] & 0xffffffffL);
			data[i] = (int)diff;
			diff >>= 32; // N.B. SIGNED shift.
		}
		if (diff != 0L) {
			// damn, damn, damn. q is too big.
			// add S back in until this turns +. This should
			// not be very many times!
			long sum = 0L;
			while (sum == 0L) {
				sum = 0L;
				for (int i = 0; i <= n; i++) {
					sum += ((long)data[i] & 0xffffffffL) +
						((long)S.data[i] & 0xffffffffL);
					data[i] = (int)sum;
					sum >>= 32; // Signed or unsigned, answer is 0 or 1
				}
				/*
				 * Originally the following line read
				 * "if ( sum !=0 && sum != -1 )"
				 * but that would be wrong, because of the
				 * treatment of the two values as entirely unsigned,
				 * it would be impossible for a carry-out to be interpreted
				 * as -1 -- it would have to be a single-bit carry-out, or
				 * +1.
				 */
				if (sum != 0 && sum != 1)
					throw new RuntimeException("Assertion botch: " + sum +
						" carry out of division correction");
				q -= 1;
			}
		}
		// finally, we can multiply this by 10.
		// it cannot overflow, right, as the high-order word has
		// at least 4 high-order zeros!
		long p = 0L;
		for (int i = 0; i <= n; i++) {
			p += 10 * ((long)data[i] & 0xffffffffL);
			data[i] = (int)p;
			p >>= 32; // SIGNED shift.
		}
		if (p != 0L)
			throw new RuntimeException("Assertion botch: carry out of *10");

		return (int)q;
	}

	public long
		longValue() {
		// if this can be represented as a long,
		// return the value
		int i;
		for (i = this.nWords - 1; i > 1; i--) {
			if (data[i] != 0) {
				throw new RuntimeException("Assertion botch: value too big");
			}
		}
		switch (i) {
		case 1:
			if (data[1] < 0)
				throw new RuntimeException("Assertion botch: value too big");
			return ((long)(data[1]) << 32) | ((long)data[0] & 0xffffffffL);
		case 0:
			return ((long)data[0] & 0xffffffffL);
		default:
			throw new RuntimeException("Assertion botch: longValue confused");
		}
	}

	public String
		toString() {
		StringBuffer r = new StringBuffer(30);
		r.append('[');
		int i = Math.min(nWords - 1, data.length - 1);
		if (nWords > data.length) {
			r.append("(" + data.length + "<" + nWords + "!)");
		}
		for (; i > 0; i--) {
			r.append(Integer.toHexString(data[i]));
			r.append((char)' ');
		}
		r.append(Integer.toHexString(data[0]));
		r.append((char)']');
		return new String(r);
	}
}





© 2015 - 2024 Weber Informatics LLC | Privacy Policy