All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.seeq.model.RegressionOutputV1 Maven / Gradle / Ivy

There is a newer version: 66.0.0-v202410141803
Show newest version
/*
 * Seeq REST API
 * No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen)
 *
 * OpenAPI spec version: 65.1.6-v202409201821
 * 
 *
 * NOTE: This class is auto generated by the swagger code generator program.
 * https://github.com/swagger-api/swagger-codegen.git
 * Do not edit the class manually.
 */

package com.seeq.model;

import java.util.Objects;
import java.util.Arrays;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonValue;
import io.swagger.v3.oas.annotations.media.Schema;
/**
 * Regression output from the formula result. Note that the `table` will also contain values.
 */
@Schema(description = "Regression output from the formula result. Note that the `table` will also contain values.")
public class RegressionOutputV1 {
  @JsonProperty("adjustedRSquared")
  private Double adjustedRSquared = null;

  @JsonProperty("errorSumSquares")
  private Double errorSumSquares = null;

  @JsonProperty("intercept")
  private Double intercept = null;

  @JsonProperty("interceptStandardError")
  private Double interceptStandardError = null;

  @JsonProperty("isUncertain")
  private Boolean isUncertain = false;

  @JsonProperty("rSquared")
  private Double rSquared = null;

  @JsonProperty("regressionSumSquares")
  private Double regressionSumSquares = null;

  @JsonProperty("suggestedPValueCutoff")
  private Double suggestedPValueCutoff = null;

  public RegressionOutputV1 adjustedRSquared(Double adjustedRSquared) {
    this.adjustedRSquared = adjustedRSquared;
    return this;
  }

   /**
   * The measure of how close the data is to the regression line, adjusted for the number of input signals and samples
   * @return adjustedRSquared
  **/
  @Schema(required = true, description = "The measure of how close the data is to the regression line, adjusted for the number of input signals and samples")
  public Double getAdjustedRSquared() {
    return adjustedRSquared;
  }

  public void setAdjustedRSquared(Double adjustedRSquared) {
    this.adjustedRSquared = adjustedRSquared;
  }

  public RegressionOutputV1 errorSumSquares(Double errorSumSquares) {
    this.errorSumSquares = errorSumSquares;
    return this;
  }

   /**
   * The standard error for the sum squares
   * @return errorSumSquares
  **/
  @Schema(required = true, description = "The standard error for the sum squares")
  public Double getErrorSumSquares() {
    return errorSumSquares;
  }

  public void setErrorSumSquares(Double errorSumSquares) {
    this.errorSumSquares = errorSumSquares;
  }

  public RegressionOutputV1 intercept(Double intercept) {
    this.intercept = intercept;
    return this;
  }

   /**
   * The constant offset to add. 0 if forceThroughZero was true. This is the intercept for the output signal rather than the individual coefficients.
   * @return intercept
  **/
  @Schema(required = true, description = "The constant offset to add. 0 if forceThroughZero was true. This is the intercept for the output signal rather than the individual coefficients.")
  public Double getIntercept() {
    return intercept;
  }

  public void setIntercept(Double intercept) {
    this.intercept = intercept;
  }

  public RegressionOutputV1 interceptStandardError(Double interceptStandardError) {
    this.interceptStandardError = interceptStandardError;
    return this;
  }

   /**
   * The standard error for the intercept
   * @return interceptStandardError
  **/
  @Schema(required = true, description = "The standard error for the intercept")
  public Double getInterceptStandardError() {
    return interceptStandardError;
  }

  public void setInterceptStandardError(Double interceptStandardError) {
    this.interceptStandardError = interceptStandardError;
  }

  public RegressionOutputV1 isUncertain(Boolean isUncertain) {
    this.isUncertain = isUncertain;
    return this;
  }

   /**
   * True if this regression is uncertain
   * @return isUncertain
  **/
  @Schema(required = true, description = "True if this regression is uncertain")
  public Boolean getIsUncertain() {
    return isUncertain;
  }

  public void setIsUncertain(Boolean isUncertain) {
    this.isUncertain = isUncertain;
  }

   /**
   * The measure of how close the data is to the regression line
   * @return rSquared
  **/
  @Schema(description = "The measure of how close the data is to the regression line")
  public Double getRSquared() {
    return rSquared;
  }

  public RegressionOutputV1 regressionSumSquares(Double regressionSumSquares) {
    this.regressionSumSquares = regressionSumSquares;
    return this;
  }

   /**
   * The measure of how well the model matches the target
   * @return regressionSumSquares
  **/
  @Schema(required = true, description = "The measure of how well the model matches the target")
  public Double getRegressionSumSquares() {
    return regressionSumSquares;
  }

  public void setRegressionSumSquares(Double regressionSumSquares) {
    this.regressionSumSquares = regressionSumSquares;
  }

  public RegressionOutputV1 suggestedPValueCutoff(Double suggestedPValueCutoff) {
    this.suggestedPValueCutoff = suggestedPValueCutoff;
    return this;
  }

   /**
   * The value which the regression method suggests for ignoring coefficients
   * @return suggestedPValueCutoff
  **/
  @Schema(required = true, description = "The value which the regression method suggests for ignoring coefficients")
  public Double getSuggestedPValueCutoff() {
    return suggestedPValueCutoff;
  }

  public void setSuggestedPValueCutoff(Double suggestedPValueCutoff) {
    this.suggestedPValueCutoff = suggestedPValueCutoff;
  }


  @Override
  public boolean equals(java.lang.Object o) {
    if (this == o) {
      return true;
    }
    if (o == null || getClass() != o.getClass()) {
      return false;
    }
    RegressionOutputV1 regressionOutputV1 = (RegressionOutputV1) o;
    return Objects.equals(this.adjustedRSquared, regressionOutputV1.adjustedRSquared) &&
        Objects.equals(this.errorSumSquares, regressionOutputV1.errorSumSquares) &&
        Objects.equals(this.intercept, regressionOutputV1.intercept) &&
        Objects.equals(this.interceptStandardError, regressionOutputV1.interceptStandardError) &&
        Objects.equals(this.isUncertain, regressionOutputV1.isUncertain) &&
        Objects.equals(this.rSquared, regressionOutputV1.rSquared) &&
        Objects.equals(this.regressionSumSquares, regressionOutputV1.regressionSumSquares) &&
        Objects.equals(this.suggestedPValueCutoff, regressionOutputV1.suggestedPValueCutoff);
  }

  @Override
  public int hashCode() {
    return Objects.hash(adjustedRSquared, errorSumSquares, intercept, interceptStandardError, isUncertain, rSquared, regressionSumSquares, suggestedPValueCutoff);
  }


  @Override
  public String toString() {
    StringBuilder sb = new StringBuilder();
    sb.append("class RegressionOutputV1 {\n");
    
    sb.append("    adjustedRSquared: ").append(toIndentedString(adjustedRSquared)).append("\n");
    sb.append("    errorSumSquares: ").append(toIndentedString(errorSumSquares)).append("\n");
    sb.append("    intercept: ").append(toIndentedString(intercept)).append("\n");
    sb.append("    interceptStandardError: ").append(toIndentedString(interceptStandardError)).append("\n");
    sb.append("    isUncertain: ").append(toIndentedString(isUncertain)).append("\n");
    sb.append("    rSquared: ").append(toIndentedString(rSquared)).append("\n");
    sb.append("    regressionSumSquares: ").append(toIndentedString(regressionSumSquares)).append("\n");
    sb.append("    suggestedPValueCutoff: ").append(toIndentedString(suggestedPValueCutoff)).append("\n");
    sb.append("}");
    return sb.toString();
  }

  /**
   * Convert the given object to string with each line indented by 4 spaces
   * (except the first line).
   */
  private String toIndentedString(java.lang.Object o) {
    if (o == null) {
      return "null";
    }
    return o.toString().replace("\n", "\n    ");
  }
  
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy