All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.signalfx.shaded.google.common.primitives.UnsignedBytes Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (C) 2009 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.signalfx.shaded.google.common.primitives;

import static com.signalfx.shaded.google.common.base.Preconditions.checkArgument;
import static com.signalfx.shaded.google.common.base.Preconditions.checkNotNull;
import static com.signalfx.shaded.google.common.base.Preconditions.checkPositionIndexes;
import static java.util.Objects.requireNonNull;

import com.signalfx.shaded.google.common.annotations.GwtIncompatible;
import com.signalfx.shaded.google.common.annotations.J2ktIncompatible;
import com.signalfx.shaded.google.common.annotations.VisibleForTesting;
import com.signalfx.shaded.google.errorprone.annotations.CanIgnoreReturnValue;
import java.nio.ByteOrder;
import java.util.Arrays;
import java.util.Comparator;
import sun.misc.Unsafe;

/**
 * Static utility methods pertaining to {@code byte} primitives that interpret values as
 * unsigned (that is, any negative value {@code b} is treated as the positive value {@code
 * 256 + b}). The corresponding methods that treat the values as signed are found in {@link
 * SignedBytes}, and the methods for which signedness is not an issue are in {@link Bytes}.
 *
 * 

See the Guava User Guide article on primitive utilities. * * @author Kevin Bourrillion * @author Martin Buchholz * @author Hiroshi Yamauchi * @author Louis Wasserman * @since 1.0 */ @J2ktIncompatible @GwtIncompatible @ElementTypesAreNonnullByDefault public final class UnsignedBytes { private UnsignedBytes() {} /** * The largest power of two that can be represented as an unsigned {@code byte}. * * @since 10.0 */ public static final byte MAX_POWER_OF_TWO = (byte) 0x80; /** * The largest value that fits into an unsigned byte. * * @since 13.0 */ public static final byte MAX_VALUE = (byte) 0xFF; private static final int UNSIGNED_MASK = 0xFF; /** * Returns the value of the given byte as an integer, when treated as unsigned. That is, returns * {@code value + 256} if {@code value} is negative; {@code value} itself otherwise. * *

Java 8+ users: use {@link Byte#toUnsignedInt(byte)} instead. * * @since 6.0 */ public static int toInt(byte value) { return value & UNSIGNED_MASK; } /** * Returns the {@code byte} value that, when treated as unsigned, is equal to {@code value}, if * possible. * * @param value a value between 0 and 255 inclusive * @return the {@code byte} value that, when treated as unsigned, equals {@code value} * @throws IllegalArgumentException if {@code value} is negative or greater than 255 */ @CanIgnoreReturnValue public static byte checkedCast(long value) { checkArgument(value >> Byte.SIZE == 0, "out of range: %s", value); return (byte) value; } /** * Returns the {@code byte} value that, when treated as unsigned, is nearest in value to {@code * value}. * * @param value any {@code long} value * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if {@code value <= 0}, and * {@code value} cast to {@code byte} otherwise */ public static byte saturatedCast(long value) { if (value > toInt(MAX_VALUE)) { return MAX_VALUE; // -1 } if (value < 0) { return (byte) 0; } return (byte) value; } /** * Compares the two specified {@code byte} values, treating them as unsigned values between 0 and * 255 inclusive. For example, {@code (byte) -127} is considered greater than {@code (byte) 127} * because it is seen as having the value of positive {@code 129}. * * @param a the first {@code byte} to compare * @param b the second {@code byte} to compare * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is * greater than {@code b}; or zero if they are equal */ public static int compare(byte a, byte b) { return toInt(a) - toInt(b); } /** * Returns the least value present in {@code array}, treating values as unsigned. * * @param array a nonempty array of {@code byte} values * @return the value present in {@code array} that is less than or equal to every other value in * the array according to {@link #compare} * @throws IllegalArgumentException if {@code array} is empty */ public static byte min(byte... array) { checkArgument(array.length > 0); int min = toInt(array[0]); for (int i = 1; i < array.length; i++) { int next = toInt(array[i]); if (next < min) { min = next; } } return (byte) min; } /** * Returns the greatest value present in {@code array}, treating values as unsigned. * * @param array a nonempty array of {@code byte} values * @return the value present in {@code array} that is greater than or equal to every other value * in the array according to {@link #compare} * @throws IllegalArgumentException if {@code array} is empty */ public static byte max(byte... array) { checkArgument(array.length > 0); int max = toInt(array[0]); for (int i = 1; i < array.length; i++) { int next = toInt(array[i]); if (next > max) { max = next; } } return (byte) max; } /** * Returns a string representation of x, where x is treated as unsigned. * * @since 13.0 */ public static String toString(byte x) { return toString(x, 10); } /** * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as * unsigned. * * @param x the value to convert to a string. * @param radix the radix to use while working with {@code x} * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} * and {@link Character#MAX_RADIX}. * @since 13.0 */ public static String toString(byte x, int radix) { checkArgument( radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix); // Benchmarks indicate this is probably not worth optimizing. return Integer.toString(toInt(x), radix); } /** * Returns the unsigned {@code byte} value represented by the given decimal string. * * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} * value * @throws NullPointerException if {@code string} is null (in contrast to {@link * Byte#parseByte(String)}) * @since 13.0 */ @CanIgnoreReturnValue public static byte parseUnsignedByte(String string) { return parseUnsignedByte(string, 10); } /** * Returns the unsigned {@code byte} value represented by a string with the given radix. * * @param string the string containing the unsigned {@code byte} representation to be parsed. * @param radix the radix to use while parsing {@code string} * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} with * the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and {@link * Character#MAX_RADIX}. * @throws NullPointerException if {@code string} is null (in contrast to {@link * Byte#parseByte(String)}) * @since 13.0 */ @CanIgnoreReturnValue public static byte parseUnsignedByte(String string, int radix) { int parse = Integer.parseInt(checkNotNull(string), radix); // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =( if (parse >> Byte.SIZE == 0) { return (byte) parse; } else { throw new NumberFormatException("out of range: " + parse); } } /** * Returns a string containing the supplied {@code byte} values separated by {@code separator}. * For example, {@code join(":", (byte) 1, (byte) 2, (byte) 255)} returns the string {@code * "1:2:255"}. * * @param separator the text that should appear between consecutive values in the resulting string * (but not at the start or end) * @param array an array of {@code byte} values, possibly empty */ public static String join(String separator, byte... array) { checkNotNull(separator); if (array.length == 0) { return ""; } // For pre-sizing a builder, just get the right order of magnitude StringBuilder builder = new StringBuilder(array.length * (3 + separator.length())); builder.append(toInt(array[0])); for (int i = 1; i < array.length; i++) { builder.append(separator).append(toString(array[i])); } return builder.toString(); } /** * Returns a comparator that compares two {@code byte} arrays lexicographically. That is, it * compares, using {@link #compare(byte, byte)}), the first pair of values that follow any common * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For * example, {@code [] < [0x01] < [0x01, 0x7F] < [0x01, 0x80] < [0x02]}. Values are treated as * unsigned. * *

The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays * support only identity equality), but it is consistent with {@link * java.util.Arrays#equals(byte[], byte[])}. * * @since 2.0 */ public static Comparator lexicographicalComparator() { return LexicographicalComparatorHolder.BEST_COMPARATOR; } @VisibleForTesting static Comparator lexicographicalComparatorJavaImpl() { return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; } /** * Provides a lexicographical comparator implementation; either a Java implementation or a faster * implementation based on {@link Unsafe}. * *

Uses reflection to gracefully fall back to the Java implementation if {@code Unsafe} isn't * available. */ @VisibleForTesting static class LexicographicalComparatorHolder { static final String UNSAFE_COMPARATOR_NAME = LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; static final Comparator BEST_COMPARATOR = getBestComparator(); @VisibleForTesting enum UnsafeComparator implements Comparator { INSTANCE; static final boolean BIG_ENDIAN = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN); /* * The following static final fields exist for performance reasons. * * In UnsignedBytesBenchmark, accessing the following objects via static final fields is the * fastest (more than twice as fast as the Java implementation, vs ~1.5x with non-final static * fields, on x86_32) under the Hotspot server compiler. The reason is obviously that the * non-final fields need to be reloaded inside the loop. * * And, no, defining (final or not) local variables out of the loop still isn't as good * because the null check on the theUnsafe object remains inside the loop and * BYTE_ARRAY_BASE_OFFSET doesn't get constant-folded. * * The compiler can treat static final fields as compile-time constants and can constant-fold * them while (final or not) local variables are run time values. */ static final Unsafe theUnsafe = getUnsafe(); /** The offset to the first element in a byte array. */ static final int BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); static { // fall back to the safer pure java implementation unless we're in // a 64-bit JVM with an 8-byte aligned field offset. if (!("64".equals(System.getProperty("sun.arch.data.model")) && (BYTE_ARRAY_BASE_OFFSET % 8) == 0 // sanity check - this should never fail && theUnsafe.arrayIndexScale(byte[].class) == 1)) { throw new Error(); // force fallback to PureJavaComparator } } /** * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. Replace with a simple * call to Unsafe.getUnsafe when integrating into a jdk. * * @return a sun.misc.Unsafe */ @SuppressWarnings("removal") // b/318391980 private static sun.misc.Unsafe getUnsafe() { try { return sun.misc.Unsafe.getUnsafe(); } catch (SecurityException e) { // that's okay; try reflection instead } try { return java.security.AccessController.doPrivileged( new java.security.PrivilegedExceptionAction() { @Override public sun.misc.Unsafe run() throws Exception { Class k = sun.misc.Unsafe.class; for (java.lang.reflect.Field f : k.getDeclaredFields()) { f.setAccessible(true); Object x = f.get(null); if (k.isInstance(x)) { return k.cast(x); } } throw new NoSuchFieldError("the Unsafe"); } }); } catch (java.security.PrivilegedActionException e) { throw new RuntimeException("Could not initialize intrinsics", e.getCause()); } } @Override public int compare(byte[] left, byte[] right) { int stride = 8; int minLength = Math.min(left.length, right.length); int strideLimit = minLength & ~(stride - 1); int i; /* * Compare 8 bytes at a time. Benchmarking on x86 shows a stride of 8 bytes is no slower * than 4 bytes even on 32-bit. On the other hand, it is substantially faster on 64-bit. */ for (i = 0; i < strideLimit; i += stride) { long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); if (lw != rw) { if (BIG_ENDIAN) { return UnsignedLongs.compare(lw, rw); } /* * We want to compare only the first index where left[index] != right[index]. This * corresponds to the least significant nonzero byte in lw ^ rw, since lw and rw are * little-endian. Long.numberOfTrailingZeros(diff) tells us the least significant * nonzero bit, and zeroing out the first three bits of L.nTZ gives us the shift to get * that least significant nonzero byte. */ int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7; return ((int) ((lw >>> n) & UNSIGNED_MASK)) - ((int) ((rw >>> n) & UNSIGNED_MASK)); } } // The epilogue to cover the last (minLength % stride) elements. for (; i < minLength; i++) { int result = UnsignedBytes.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } @Override public String toString() { return "UnsignedBytes.lexicographicalComparator() (sun.misc.Unsafe version)"; } } enum PureJavaComparator implements Comparator { INSTANCE; @Override public int compare(byte[] left, byte[] right) { int minLength = Math.min(left.length, right.length); for (int i = 0; i < minLength; i++) { int result = UnsignedBytes.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } @Override public String toString() { return "UnsignedBytes.lexicographicalComparator() (pure Java version)"; } } /** * Returns the Unsafe-using Comparator, or falls back to the pure-Java implementation if unable * to do so. */ static Comparator getBestComparator() { try { Class theClass = Class.forName(UNSAFE_COMPARATOR_NAME); // requireNonNull is safe because the class is an enum. Object[] constants = requireNonNull(theClass.getEnumConstants()); // yes, UnsafeComparator does implement Comparator @SuppressWarnings("unchecked") Comparator comparator = (Comparator) constants[0]; return comparator; } catch (Throwable t) { // ensure we really catch *everything* return lexicographicalComparatorJavaImpl(); } } } private static byte flip(byte b) { return (byte) (b ^ 0x80); } /** * Sorts the array, treating its elements as unsigned bytes. * * @since 23.1 */ public static void sort(byte[] array) { checkNotNull(array); sort(array, 0, array.length); } /** * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its * elements as unsigned bytes. * * @since 23.1 */ public static void sort(byte[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); for (int i = fromIndex; i < toIndex; i++) { array[i] = flip(array[i]); } Arrays.sort(array, fromIndex, toIndex); for (int i = fromIndex; i < toIndex; i++) { array[i] = flip(array[i]); } } /** * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 8-bit * integers. * * @since 23.1 */ public static void sortDescending(byte[] array) { checkNotNull(array); sortDescending(array, 0, array.length); } /** * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive in descending order, interpreting them as unsigned 8-bit integers. * * @since 23.1 */ public static void sortDescending(byte[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); for (int i = fromIndex; i < toIndex; i++) { array[i] ^= Byte.MAX_VALUE; } Arrays.sort(array, fromIndex, toIndex); for (int i = fromIndex; i < toIndex; i++) { array[i] ^= Byte.MAX_VALUE; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy