com.signalfx.shaded.jetty.util.thread.strategy.ExecuteProduceConsume Maven / Gradle / Ivy
Show all versions of signalfx-java Show documentation
//
// ========================================================================
// Copyright (c) 1995-2019 Mort Bay Consulting Pty. Ltd.
// ------------------------------------------------------------------------
// All rights reserved. This program and the accompanying materials
// are made available under the terms of the Eclipse Public License v1.0
// and Apache License v2.0 which accompanies this distribution.
//
// The Eclipse Public License is available at
// http://www.eclipse.org/legal/epl-v10.html
//
// The Apache License v2.0 is available at
// http://www.opensource.org/licenses/apache2.0.php
//
// You may elect to redistribute this code under either of these licenses.
// ========================================================================
//
package com.signalfx.shaded.jetty.util.thread.strategy;
import java.util.concurrent.Executor;
import com.signalfx.shaded.jetty.util.log.Log;
import com.signalfx.shaded.jetty.util.log.Logger;
import com.signalfx.shaded.jetty.util.thread.ExecutionStrategy;
import com.signalfx.shaded.jetty.util.thread.Invocable;
import com.signalfx.shaded.jetty.util.thread.Invocable.InvocationType;
import com.signalfx.shaded.jetty.util.thread.Locker;
import com.signalfx.shaded.jetty.util.thread.Locker.Lock;
/**
* A strategy where the thread that produces will always run the resulting task.
* The strategy may then dispatch another thread to continue production.
* The strategy is also known by the nickname 'eat what you kill', which comes from
* the hunting ethic that says a person should not kill anything he or she does not
* plan on eating. In this case, the phrase is used to mean that a thread should
* not produce a task that it does not intend to run. By making producers run the
* task that they have just produced avoids execution delays and avoids parallel slow
* down by running the task in the same core, with good chances of having a hot CPU
* cache. It also avoids the creation of a queue of produced tasks that the system
* does not yet have capacity to consume, which can save memory and exert back
* pressure on producers.
*/
public class ExecuteProduceConsume implements ExecutionStrategy, Runnable
{
private static final Logger LOG = Log.getLogger(ExecuteProduceConsume.class);
private final Locker _locker = new Locker();
private final Runnable _runProduce = new RunProduce();
private final Producer _producer;
private final Executor _executor;
private boolean _idle = true;
private boolean _execute;
private boolean _producing;
private boolean _pending;
public ExecuteProduceConsume(Producer producer, Executor executor)
{
this._producer = producer;
_executor = executor;
}
@Override
public void produce()
{
if (LOG.isDebugEnabled())
LOG.debug("{} execute", this);
boolean produce = false;
try (Lock locked = _locker.lock())
{
// If we are idle and a thread is not producing
if (_idle)
{
if (_producing)
throw new IllegalStateException();
// Then this thread will do the producing
produce = _producing = true;
// and we are no longer idle
_idle = false;
}
else
{
// Otherwise, lets tell the producing thread
// that it should call produce again before going idle
_execute = true;
}
}
if (produce)
produceConsume();
}
@Override
public void dispatch()
{
if (LOG.isDebugEnabled())
LOG.debug("{} spawning", this);
boolean dispatch = false;
try (Lock locked = _locker.lock())
{
if (_idle)
dispatch = true;
else
_execute = true;
}
if (dispatch)
_executor.execute(_runProduce);
}
@Override
public void run()
{
if (LOG.isDebugEnabled())
LOG.debug("{} run", this);
boolean produce = false;
try (Lock locked = _locker.lock())
{
_pending = false;
if (!_idle && !_producing)
{
produce = _producing = true;
}
}
if (produce)
produceConsume();
}
private void produceConsume()
{
if (LOG.isDebugEnabled())
LOG.debug("{} produce enter", this);
while (true)
{
// If we got here, then we are the thread that is producing.
if (LOG.isDebugEnabled())
LOG.debug("{} producing", this);
Runnable task = _producer.produce();
if (LOG.isDebugEnabled())
LOG.debug("{} produced {}", this, task);
boolean dispatch = false;
try (Lock locked = _locker.lock())
{
// Finished producing
_producing = false;
// Did we produced a task?
if (task == null)
{
// There is no task.
// Could another one just have been queued with an execute?
if (_execute)
{
_idle = false;
_producing = true;
_execute = false;
continue;
}
// ... and no additional calls to execute, so we are idle
_idle = true;
break;
}
// We have a task, which we will run ourselves,
// so if we don't have another thread pending
if (!_pending)
{
// dispatch one
dispatch = _pending = Invocable.getInvocationType(task) != InvocationType.NON_BLOCKING;
}
_execute = false;
}
// If we became pending
if (dispatch)
{
// Spawn a new thread to continue production by running the produce loop.
if (LOG.isDebugEnabled())
LOG.debug("{} dispatch", this);
_executor.execute(this);
}
// Run the task.
if (LOG.isDebugEnabled())
LOG.debug("{} run {}", this, task);
if (task != null)
task.run();
if (LOG.isDebugEnabled())
LOG.debug("{} ran {}", this, task);
// Once we have run the task, we can try producing again.
try (Lock locked = _locker.lock())
{
// Is another thread already producing or we are now idle?
if (_producing || _idle)
break;
_producing = true;
}
}
if (LOG.isDebugEnabled())
LOG.debug("{} produce exit", this);
}
public Boolean isIdle()
{
try (Lock locked = _locker.lock())
{
return _idle;
}
}
@Override
public String toString()
{
StringBuilder builder = new StringBuilder();
builder.append("EPC ");
try (Lock locked = _locker.lock())
{
builder.append(_idle ? "Idle/" : "");
builder.append(_producing ? "Prod/" : "");
builder.append(_pending ? "Pend/" : "");
builder.append(_execute ? "Exec/" : "");
}
builder.append(_producer);
return builder.toString();
}
private class RunProduce implements Runnable
{
@Override
public void run()
{
produce();
}
}
}