org.opencv.core.Core Maven / Gradle / Ivy
Show all versions of sikulixapi Show documentation
// // This file is auto-generated. Please don't modify it! // package org.opencv.core; import java.lang.String; import java.util.ArrayList; import java.util.List; import org.opencv.utils.Converters; public class Core { // these constants are wrapped inside functions to prevent inlining private static String getVersion() { return "2.4.8.0"; } private static String getNativeLibraryName() { return "opencv_java248"; } private static int getVersionEpoch() { return 2; } private static int getVersionMajor() { return 4; } private static int getVersionMinor() { return 8; } private static int getVersionRevision() { return 0; } public static final String VERSION = getVersion(); public static final String NATIVE_LIBRARY_NAME = getNativeLibraryName(); public static final int VERSION_EPOCH = getVersionEpoch(); public static final int VERSION_MAJOR = getVersionMajor(); public static final int VERSION_MINOR = getVersionMinor(); public static final int VERSION_REVISION = getVersionRevision(); private static final int CV_8U = 0, CV_8S = 1, CV_16U = 2, CV_16S = 3, CV_32S = 4, CV_32F = 5, CV_64F = 6, CV_USRTYPE1 = 7; public static final int SVD_MODIFY_A = 1, SVD_NO_UV = 2, SVD_FULL_UV = 4, FILLED = -1, LINE_AA = 16, LINE_8 = 8, LINE_4 = 4, REDUCE_SUM = 0, REDUCE_AVG = 1, REDUCE_MAX = 2, REDUCE_MIN = 3, DECOMP_LU = 0, DECOMP_SVD = 1, DECOMP_EIG = 2, DECOMP_CHOLESKY = 3, DECOMP_QR = 4, DECOMP_NORMAL = 16, NORM_INF = 1, NORM_L1 = 2, NORM_L2 = 4, NORM_L2SQR = 5, NORM_HAMMING = 6, NORM_HAMMING2 = 7, NORM_TYPE_MASK = 7, NORM_RELATIVE = 8, NORM_MINMAX = 32, CMP_EQ = 0, CMP_GT = 1, CMP_GE = 2, CMP_LT = 3, CMP_LE = 4, CMP_NE = 5, GEMM_1_T = 1, GEMM_2_T = 2, GEMM_3_T = 4, DFT_INVERSE = 1, DFT_SCALE = 2, DFT_ROWS = 4, DFT_COMPLEX_OUTPUT = 16, DFT_REAL_OUTPUT = 32, DCT_INVERSE = DFT_INVERSE, DCT_ROWS = DFT_ROWS, DEPTH_MASK_8U = 1 << CV_8U, DEPTH_MASK_8S = 1 << CV_8S, DEPTH_MASK_16U = 1 << CV_16U, DEPTH_MASK_16S = 1 << CV_16S, DEPTH_MASK_32S = 1 << CV_32S, DEPTH_MASK_32F = 1 << CV_32F, DEPTH_MASK_64F = 1 << CV_64F, DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1, DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S, DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F, MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7, SORT_EVERY_ROW = 0, SORT_EVERY_COLUMN = 1, SORT_ASCENDING = 0, SORT_DESCENDING = 16, COVAR_SCRAMBLED = 0, COVAR_NORMAL = 1, COVAR_USE_AVG = 2, COVAR_SCALE = 4, COVAR_ROWS = 8, COVAR_COLS = 16, KMEANS_RANDOM_CENTERS = 0, KMEANS_PP_CENTERS = 2, KMEANS_USE_INITIAL_LABELS = 1, FONT_HERSHEY_SIMPLEX = 0, FONT_HERSHEY_PLAIN = 1, FONT_HERSHEY_DUPLEX = 2, FONT_HERSHEY_COMPLEX = 3, FONT_HERSHEY_TRIPLEX = 4, FONT_HERSHEY_COMPLEX_SMALL = 5, FONT_HERSHEY_SCRIPT_SIMPLEX = 6, FONT_HERSHEY_SCRIPT_COMPLEX = 7, FONT_ITALIC = 16; // // C++: void LUT(Mat src, Mat lut, Mat& dst, int interpolation = 0) // /** *
* *Performs a look-up table transform of an array.
* *The function
* *LUT
fills the output array with values from the * look-up table. Indices of the entries are taken from the input array. That * is, the function processes each element ofsrc
as follows:dst(I) <- lut(src(I) + d)
* *where
* *d = 0 if src has depth CV_8U; 128 if src has depth CV_8S
* * @param src input array of 8-bit elements. * @param lut look-up table of 256 elements; in case of multi-channel input * array, the table should either have a single channel (in this case the same * table is used for all channels) or the same number of channels as in the * input array. * @param dst output array of the same size and number of channels as *src
, and the same depth aslut
. * @param interpolation a interpolation * * @see org.opencv.core.Core.LUT * @see org.opencv.core.Mat#convertTo * @see org.opencv.core.Core#convertScaleAbs */ public static void LUT(Mat src, Mat lut, Mat dst, int interpolation) { LUT_0(src.nativeObj, lut.nativeObj, dst.nativeObj, interpolation); return; } /** *Performs a look-up table transform of an array.
* *The function
* *LUT
fills the output array with values from the * look-up table. Indices of the entries are taken from the input array. That * is, the function processes each element ofsrc
as follows:dst(I) <- lut(src(I) + d)
* *where
* *d = 0 if src has depth CV_8U; 128 if src has depth CV_8S
* * @param src input array of 8-bit elements. * @param lut look-up table of 256 elements; in case of multi-channel input * array, the table should either have a single channel (in this case the same * table is used for all channels) or the same number of channels as in the * input array. * @param dst output array of the same size and number of channels as *src
, and the same depth aslut
. * * @see org.opencv.core.Core.LUT * @see org.opencv.core.Mat#convertTo * @see org.opencv.core.Core#convertScaleAbs */ public static void LUT(Mat src, Mat lut, Mat dst) { LUT_1(src.nativeObj, lut.nativeObj, dst.nativeObj); return; } // // C++: double Mahalanobis(Mat v1, Mat v2, Mat icovar) // /** *Calculates the Mahalanobis distance between two vectors.
* *The function
* *Mahalanobis
calculates and returns the weighted * distance between two vectors:d(vec1, vec2)= sqrt(sum_(i,j)(icovar(i,j)*(vec1(I)-vec2(I))*(vec1(j)-vec2(j))))
* *The covariance matrix may be calculated using the "calcCovarMatrix" function * and then inverted using the "invert" function (preferably using the *
* * @param v1 a v1 * @param v2 a v2 * @param icovar inverse covariance matrix. * * @see org.opencv.core.Core.Mahalanobis */ public static double Mahalanobis(Mat v1, Mat v2, Mat icovar) { double retVal = Mahalanobis_0(v1.nativeObj, v2.nativeObj, icovar.nativeObj); return retVal; } // // C++: void PCABackProject(Mat data, Mat mean, Mat eigenvectors, Mat& result) // public static void PCABackProject(Mat data, Mat mean, Mat eigenvectors, Mat result) { PCABackProject_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, result.nativeObj); return; } // // C++: void PCACompute(Mat data, Mat& mean, Mat& eigenvectors, int maxComponents = 0) // public static void PCACompute(Mat data, Mat mean, Mat eigenvectors, int maxComponents) { PCACompute_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, maxComponents); return; } public static void PCACompute(Mat data, Mat mean, Mat eigenvectors) { PCACompute_1(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj); return; } // // C++: void PCAComputeVar(Mat data, Mat& mean, Mat& eigenvectors, double retainedVariance) // public static void PCAComputeVar(Mat data, Mat mean, Mat eigenvectors, double retainedVariance) { PCAComputeVar_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, retainedVariance); return; } // // C++: void PCAProject(Mat data, Mat mean, Mat eigenvectors, Mat& result) // public static void PCAProject(Mat data, Mat mean, Mat eigenvectors, Mat result) { PCAProject_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, result.nativeObj); return; } // // C++: void SVBackSubst(Mat w, Mat u, Mat vt, Mat rhs, Mat& dst) // public static void SVBackSubst(Mat w, Mat u, Mat vt, Mat rhs, Mat dst) { SVBackSubst_0(w.nativeObj, u.nativeObj, vt.nativeObj, rhs.nativeObj, dst.nativeObj); return; } // // C++: void SVDecomp(Mat src, Mat& w, Mat& u, Mat& vt, int flags = 0) // public static void SVDecomp(Mat src, Mat w, Mat u, Mat vt, int flags) { SVDecomp_0(src.nativeObj, w.nativeObj, u.nativeObj, vt.nativeObj, flags); return; } public static void SVDecomp(Mat src, Mat w, Mat u, Mat vt) { SVDecomp_1(src.nativeObj, w.nativeObj, u.nativeObj, vt.nativeObj); return; } // // C++: void absdiff(Mat src1, Mat src2, Mat& dst) // /** *DECOMP_SVD
method, as the most accurate).Calculates the per-element absolute difference between two arrays or between * an array and a scalar.
* *The function
*absdiff
calculates:*
* *- Absolute difference between two arrays when they have the same size * and type: *
dst(I) = saturate(| src1(I) - src2(I)|)
* **
* *- Absolute difference between an array and a scalar when the second * array is constructed from
Scalar
or has as many elements as the * number of channels insrc1
: *dst(I) = saturate(| src1(I) - src2|)
* **
* *- Absolute difference between a scalar and an array when the first array * is constructed from
Scalar
or has as many elements as the number * of channels insrc2
: *dst(I) = saturate(| src1 - src2(I)|)
* *where
* *I
is a multi-dimensional index of array elements. In case * of multi-channel arrays, each channel is processed independently.Note: Saturation is not applied when the arrays have the depth *
* * @param src1 first input array or a scalar. * @param src2 second input array or a scalar. * @param dst output array that has the same size and type as input arrays. * * @see org.opencv.core.Core.absdiff */ public static void absdiff(Mat src1, Mat src2, Mat dst) { absdiff_0(src1.nativeObj, src2.nativeObj, dst.nativeObj); return; } // // C++: void absdiff(Mat src1, Scalar src2, Mat& dst) // /** *CV_32S
. You may even get a negative value in the case of * overflow.Calculates the per-element absolute difference between two arrays or between * an array and a scalar.
* *The function
*absdiff
calculates:*
* *- Absolute difference between two arrays when they have the same size * and type: *
dst(I) = saturate(| src1(I) - src2(I)|)
* **
* *- Absolute difference between an array and a scalar when the second * array is constructed from
Scalar
or has as many elements as the * number of channels insrc1
: *dst(I) = saturate(| src1(I) - src2|)
* **
* *- Absolute difference between a scalar and an array when the first array * is constructed from
Scalar
or has as many elements as the number * of channels insrc2
: *dst(I) = saturate(| src1 - src2(I)|)
* *where
* *I
is a multi-dimensional index of array elements. In case * of multi-channel arrays, each channel is processed independently.Note: Saturation is not applied when the arrays have the depth *
* * @param src1 first input array or a scalar. * @param src2 second input array or a scalar. * @param dst output array that has the same size and type as input arrays. * * @see org.opencv.core.Core.absdiff */ public static void absdiff(Mat src1, Scalar src2, Mat dst) { absdiff_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj); return; } // // C++: void add(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1) // /** *CV_32S
. You may even get a negative value in the case of * overflow.Calculates the per-element sum of two arrays or an array and a scalar.
* *The function
*add
calculates:*
* *- Sum of two arrays when both input arrays have the same size and the * same number of channels: *
dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0
* **
* *- Sum of an array and a scalar when
src2
is constructed * fromScalar
or has the same number of elements as *src1.channels()
: *dst(I) = saturate(src1(I) + src2) if mask(I) != 0
* **
* *- Sum of a scalar and an array when
src1
is constructed * fromScalar
or has the same number of elements as *src2.channels()
: *dst(I) = saturate(src1 + src2(I)) if mask(I) != 0
* *where
* *I
is a multi-dimensional index of array elements. In case * of multi-channel arrays, each channel is processed independently. * The first function in the list above can be replaced with matrix expressions: *// C++ code:
* *dst = src1 + src2;
* *dst += src1; // equivalent to add(dst, src1, dst);
* *The input arrays and the output array can all have the same or different * depths. For example, you can add a 16-bit unsigned array to a 8-bit signed * array and store the sum as a 32-bit floating-point array. Depth of the output * array is determined by the
dtype
parameter. In the second and * third cases above, as well as in the first case, whensrc1.depth() == * src2.depth()
,dtype
can be set to the default *-1
. In this case, the output array will have the same depth as * the input array, be itsrc1
,src2
or both. *Note: Saturation is not applied when the output array has the depth *
* * @param src1 first input array or a scalar. * @param src2 second input array or a scalar. * @param dst output array that has the same size and number of channels as the * input array(s); the depth is defined byCV_32S
. You may even get result of an incorrect sign in the case * of overflow.dtype
or *src1
/src2
. * @param mask optional operation mask - 8-bit single channel array, that * specifies elements of the output array to be changed. * @param dtype optional depth of the output array (see the discussion below). * * @see org.opencv.core.Core.add * @see org.opencv.core.Core#addWeighted * @see org.opencv.core.Mat#convertTo * @see org.opencv.core.Core#scaleAdd * @see org.opencv.core.Core#subtract */ public static void add(Mat src1, Mat src2, Mat dst, Mat mask, int dtype) { add_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj, dtype); return; } /** *Calculates the per-element sum of two arrays or an array and a scalar.
* *The function
*add
calculates:
-
*
- Sum of two arrays when both input arrays have the same size and the * same number of channels: *
dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0
* *-
*
- Sum of an array and a scalar when
src2
is constructed * fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) + src2) if mask(I) != 0
* *-
*
- Sum of a scalar and an array when
src1
is constructed * fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 + src2(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 + src2;
* *dst += src1; // equivalent to add(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
* array and store the sum as a 32-bit floating-point array. Depth of the output
* array is determined by the dtype
parameter. In the second and
* third cases above, as well as in the first case, when src1.depth() ==
* src2.depth()
, dtype
can be set to the default
* -1
. In this case, the output array will have the same depth as
* the input array, be it src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
dtype
or
* src1
/src2
.
* @param mask optional operation mask - 8-bit single channel array, that
* specifies elements of the output array to be changed.
*
* @see org.opencv.core.Core.add
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
*/
public static void add(Mat src1, Mat src2, Mat dst, Mat mask)
{
add_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj);
return;
}
/**
* Calculates the per-element sum of two arrays or an array and a scalar.
* *The function add
calculates:
-
*
- Sum of two arrays when both input arrays have the same size and the * same number of channels: *
dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0
* *-
*
- Sum of an array and a scalar when
src2
is constructed * fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) + src2) if mask(I) != 0
* *-
*
- Sum of a scalar and an array when
src1
is constructed * fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 + src2(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 + src2;
* *dst += src1; // equivalent to add(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
* array and store the sum as a 32-bit floating-point array. Depth of the output
* array is determined by the dtype
parameter. In the second and
* third cases above, as well as in the first case, when src1.depth() ==
* src2.depth()
, dtype
can be set to the default
* -1
. In this case, the output array will have the same depth as
* the input array, be it src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
dtype
or
* src1
/src2
.
*
* @see org.opencv.core.Core.add
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
*/
public static void add(Mat src1, Mat src2, Mat dst)
{
add_2(src1.nativeObj, src2.nativeObj, dst.nativeObj);
return;
}
//
// C++: void add(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1)
//
/**
* Calculates the per-element sum of two arrays or an array and a scalar.
* *The function add
calculates:
-
*
- Sum of two arrays when both input arrays have the same size and the * same number of channels: *
dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0
* *-
*
- Sum of an array and a scalar when
src2
is constructed * fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) + src2) if mask(I) != 0
* *-
*
- Sum of a scalar and an array when
src1
is constructed * fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 + src2(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 + src2;
* *dst += src1; // equivalent to add(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
* array and store the sum as a 32-bit floating-point array. Depth of the output
* array is determined by the dtype
parameter. In the second and
* third cases above, as well as in the first case, when src1.depth() ==
* src2.depth()
, dtype
can be set to the default
* -1
. In this case, the output array will have the same depth as
* the input array, be it src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
dtype
or
* src1
/src2
.
* @param mask optional operation mask - 8-bit single channel array, that
* specifies elements of the output array to be changed.
* @param dtype optional depth of the output array (see the discussion below).
*
* @see org.opencv.core.Core.add
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
*/
public static void add(Mat src1, Scalar src2, Mat dst, Mat mask, int dtype)
{
add_3(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, mask.nativeObj, dtype);
return;
}
/**
* Calculates the per-element sum of two arrays or an array and a scalar.
* *The function add
calculates:
-
*
- Sum of two arrays when both input arrays have the same size and the * same number of channels: *
dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0
* *-
*
- Sum of an array and a scalar when
src2
is constructed * fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) + src2) if mask(I) != 0
* *-
*
- Sum of a scalar and an array when
src1
is constructed * fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 + src2(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 + src2;
* *dst += src1; // equivalent to add(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
* array and store the sum as a 32-bit floating-point array. Depth of the output
* array is determined by the dtype
parameter. In the second and
* third cases above, as well as in the first case, when src1.depth() ==
* src2.depth()
, dtype
can be set to the default
* -1
. In this case, the output array will have the same depth as
* the input array, be it src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
dtype
or
* src1
/src2
.
* @param mask optional operation mask - 8-bit single channel array, that
* specifies elements of the output array to be changed.
*
* @see org.opencv.core.Core.add
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
*/
public static void add(Mat src1, Scalar src2, Mat dst, Mat mask)
{
add_4(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, mask.nativeObj);
return;
}
/**
* Calculates the per-element sum of two arrays or an array and a scalar.
* *The function add
calculates:
-
*
- Sum of two arrays when both input arrays have the same size and the * same number of channels: *
dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0
* *-
*
- Sum of an array and a scalar when
src2
is constructed * fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) + src2) if mask(I) != 0
* *-
*
- Sum of a scalar and an array when
src1
is constructed * fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 + src2(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 + src2;
* *dst += src1; // equivalent to add(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
* array and store the sum as a 32-bit floating-point array. Depth of the output
* array is determined by the dtype
parameter. In the second and
* third cases above, as well as in the first case, when src1.depth() ==
* src2.depth()
, dtype
can be set to the default
* -1
. In this case, the output array will have the same depth as
* the input array, be it src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
dtype
or
* src1
/src2
.
*
* @see org.opencv.core.Core.add
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
*/
public static void add(Mat src1, Scalar src2, Mat dst)
{
add_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);
return;
}
//
// C++: void addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat& dst, int dtype = -1)
//
/**
* Calculates the weighted sum of two arrays.
* *The function addWeighted
calculates the weighted sum of two
* arrays as follows:
dst(I)= saturate(src1(I)* alpha + src2(I)* beta + gamma)
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The function can be replaced with a matrix expression:
// C++ code:
* *dst = src1*alpha + src2*beta + gamma;
* *Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
*
src1
.
* @param beta weight of the second array elements.
* @param gamma scalar added to each sum.
* @param dst output array that has the same size and number of channels as the
* input arrays.
* @param dtype optional depth of the output array; when both input arrays have
* the same depth, dtype
can be set to -1
, which will
* be equivalent to src1.depth()
.
*
* @see org.opencv.core.Core.addWeighted
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
* @see org.opencv.core.Mat#convertTo
*/
public static void addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat dst, int dtype)
{
addWeighted_0(src1.nativeObj, alpha, src2.nativeObj, beta, gamma, dst.nativeObj, dtype);
return;
}
/**
* Calculates the weighted sum of two arrays.
* *The function addWeighted
calculates the weighted sum of two
* arrays as follows:
dst(I)= saturate(src1(I)* alpha + src2(I)* beta + gamma)
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The function can be replaced with a matrix expression:
// C++ code:
* *dst = src1*alpha + src2*beta + gamma;
* *Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
*
src1
.
* @param beta weight of the second array elements.
* @param gamma scalar added to each sum.
* @param dst output array that has the same size and number of channels as the
* input arrays.
*
* @see org.opencv.core.Core.addWeighted
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
* @see org.opencv.core.Mat#convertTo
*/
public static void addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat dst)
{
addWeighted_1(src1.nativeObj, alpha, src2.nativeObj, beta, gamma, dst.nativeObj);
return;
}
//
// C++: void batchDistance(Mat src1, Mat src2, Mat& dist, int dtype, Mat& nidx, int normType = NORM_L2, int K = 0, Mat mask = Mat(), int update = 0, bool crosscheck = false)
//
public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K, Mat mask, int update, boolean crosscheck)
{
batchDistance_0(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj, normType, K, mask.nativeObj, update, crosscheck);
return;
}
public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K)
{
batchDistance_1(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj, normType, K);
return;
}
public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx)
{
batchDistance_2(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj);
return;
}
//
// C++: void bitwise_and(Mat src1, Mat src2, Mat& dst, Mat mask = Mat())
//
/**
* Calculates the per-element bit-wise conjunction of two arrays or an array and * a scalar.
* *The function calculates the per-element bit-wise logical conjunction for:
*-
*
- Two arrays when
src1
andsrc2
have the same * size: *
dst(I) = src1(I) / src2(I) if mask(I) != 0
* *-
*
- An array and a scalar when
src2
is constructed from *Scalar
or has the same number of elements assrc1.channels()
: *
dst(I) = src1(I) / src2 if mask(I) != 0
* *-
*
- A scalar and an array when
src1
is constructed from *Scalar
or has the same number of elements assrc2.channels()
: *
dst(I) = src1 / src2(I) if mask(I) != 0
* *In case of floating-point arrays, their machine-specific bit representations * (usually IEEE754-compliant) are used for the operation. In case of * multi-channel arrays, each channel is processed independently. In the second * and third cases above, the scalar is first converted to the array type.
* * @param src1 first input array or a scalar. * @param src2 second input array or a scalar. * @param dst output array that has the same size and type as the input arrays. * @param mask optional operation mask, 8-bit single channel array, that * specifies elements of the output array to be changed. * * @see org.opencv.core.Core.bitwise_and */ public static void bitwise_and(Mat src1, Mat src2, Mat dst, Mat mask) { bitwise_and_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); return; } /** *Calculates the per-element bit-wise conjunction of two arrays or an array and * a scalar.
* *The function calculates the per-element bit-wise logical conjunction for:
*-
*
- Two arrays when
src1
andsrc2
have the same * size: *
dst(I) = src1(I) / src2(I) if mask(I) != 0
* *-
*
- An array and a scalar when
src2
is constructed from *Scalar
or has the same number of elements assrc1.channels()
: *
dst(I) = src1(I) / src2 if mask(I) != 0
* *-
*
- A scalar and an array when
src1
is constructed from *Scalar
or has the same number of elements assrc2.channels()
: *
dst(I) = src1 / src2(I) if mask(I) != 0
* *In case of floating-point arrays, their machine-specific bit representations * (usually IEEE754-compliant) are used for the operation. In case of * multi-channel arrays, each channel is processed independently. In the second * and third cases above, the scalar is first converted to the array type.
* * @param src1 first input array or a scalar. * @param src2 second input array or a scalar. * @param dst output array that has the same size and type as the input arrays. * * @see org.opencv.core.Core.bitwise_and */ public static void bitwise_and(Mat src1, Mat src2, Mat dst) { bitwise_and_1(src1.nativeObj, src2.nativeObj, dst.nativeObj); return; } // // C++: void bitwise_not(Mat src, Mat& dst, Mat mask = Mat()) // /** *Inverts every bit of an array.
* *The function calculates per-element bit-wise inversion of the input array:
* *dst(I) = !src(I)
* *In case of a floating-point input array, its machine-specific bit * representation (usually IEEE754-compliant) is used for the operation. In case * of multi-channel arrays, each channel is processed independently.
* * @param src input array. * @param dst output array that has the same size and type as the input array. * @param mask optional operation mask, 8-bit single channel array, that * specifies elements of the output array to be changed. * * @see org.opencv.core.Core.bitwise_not */ public static void bitwise_not(Mat src, Mat dst, Mat mask) { bitwise_not_0(src.nativeObj, dst.nativeObj, mask.nativeObj); return; } /** *Inverts every bit of an array.
* *The function calculates per-element bit-wise inversion of the input array:
* *dst(I) = !src(I)
* *In case of a floating-point input array, its machine-specific bit * representation (usually IEEE754-compliant) is used for the operation. In case * of multi-channel arrays, each channel is processed independently.
* * @param src input array. * @param dst output array that has the same size and type as the input array. * * @see org.opencv.core.Core.bitwise_not */ public static void bitwise_not(Mat src, Mat dst) { bitwise_not_1(src.nativeObj, dst.nativeObj); return; } // // C++: void bitwise_or(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) // /** *Calculates the per-element bit-wise disjunction of two arrays or an array and * a scalar.
* *The function calculates the per-element bit-wise logical disjunction for:
*-
*
- Two arrays when
src1
andsrc2
have the same * size: *
dst(I) = src1(I) V src2(I) if mask(I) != 0
* *-
*
- An array and a scalar when
src2
is constructed from *Scalar
or has the same number of elements assrc1.channels()
: *
dst(I) = src1(I) V src2 if mask(I) != 0
* *-
*
- A scalar and an array when
src1
is constructed from *Scalar
or has the same number of elements assrc2.channels()
: *
dst(I) = src1 V src2(I) if mask(I) != 0
* *In case of floating-point arrays, their machine-specific bit representations * (usually IEEE754-compliant) are used for the operation. In case of * multi-channel arrays, each channel is processed independently. In the second * and third cases above, the scalar is first converted to the array type.
* * @param src1 first input array or a scalar. * @param src2 second input array or a scalar. * @param dst output array that has the same size and type as the input arrays. * @param mask optional operation mask, 8-bit single channel array, that * specifies elements of the output array to be changed. * * @see org.opencv.core.Core.bitwise_or */ public static void bitwise_or(Mat src1, Mat src2, Mat dst, Mat mask) { bitwise_or_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); return; } /** *Calculates the per-element bit-wise disjunction of two arrays or an array and * a scalar.
* *The function calculates the per-element bit-wise logical disjunction for:
*-
*
- Two arrays when
src1
andsrc2
have the same * size: *
dst(I) = src1(I) V src2(I) if mask(I) != 0
* *-
*
- An array and a scalar when
src2
is constructed from *Scalar
or has the same number of elements assrc1.channels()
: *
dst(I) = src1(I) V src2 if mask(I) != 0
* *-
*
- A scalar and an array when
src1
is constructed from *Scalar
or has the same number of elements assrc2.channels()
: *
dst(I) = src1 V src2(I) if mask(I) != 0
* *In case of floating-point arrays, their machine-specific bit representations * (usually IEEE754-compliant) are used for the operation. In case of * multi-channel arrays, each channel is processed independently. In the second * and third cases above, the scalar is first converted to the array type.
* * @param src1 first input array or a scalar. * @param src2 second input array or a scalar. * @param dst output array that has the same size and type as the input arrays. * * @see org.opencv.core.Core.bitwise_or */ public static void bitwise_or(Mat src1, Mat src2, Mat dst) { bitwise_or_1(src1.nativeObj, src2.nativeObj, dst.nativeObj); return; } // // C++: void bitwise_xor(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) // /** *Calculates the per-element bit-wise "exclusive or" operation on two arrays or * an array and a scalar.
* *The function calculates the per-element bit-wise logical "exclusive-or" * operation for:
*-
*
- Two arrays when
src1
andsrc2
have the same * size: *
dst(I) = src1(I)(+) src2(I) if mask(I) != 0
* *-
*
- An array and a scalar when
src2
is constructed from *Scalar
or has the same number of elements assrc1.channels()
: *
dst(I) = src1(I)(+) src2 if mask(I) != 0
* *-
*
- A scalar and an array when
src1
is constructed from *Scalar
or has the same number of elements assrc2.channels()
: *
dst(I) = src1(+) src2(I) if mask(I) != 0
* *In case of floating-point arrays, their machine-specific bit representations * (usually IEEE754-compliant) are used for the operation. In case of * multi-channel arrays, each channel is processed independently. In the 2nd and * 3rd cases above, the scalar is first converted to the array type.
* * @param src1 first input array or a scalar. * @param src2 second input array or a scalar. * @param dst output array that has the same size and type as the input arrays. * @param mask optional operation mask, 8-bit single channel array, that * specifies elements of the output array to be changed. * * @see org.opencv.core.Core.bitwise_xor */ public static void bitwise_xor(Mat src1, Mat src2, Mat dst, Mat mask) { bitwise_xor_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); return; } /** *Calculates the per-element bit-wise "exclusive or" operation on two arrays or * an array and a scalar.
* *The function calculates the per-element bit-wise logical "exclusive-or" * operation for:
*-
*
- Two arrays when
src1
andsrc2
have the same * size: *
dst(I) = src1(I)(+) src2(I) if mask(I) != 0
* *-
*
- An array and a scalar when
src2
is constructed from *Scalar
or has the same number of elements assrc1.channels()
: *
dst(I) = src1(I)(+) src2 if mask(I) != 0
* *-
*
- A scalar and an array when
src1
is constructed from *Scalar
or has the same number of elements assrc2.channels()
: *
dst(I) = src1(+) src2(I) if mask(I) != 0
* *In case of floating-point arrays, their machine-specific bit representations * (usually IEEE754-compliant) are used for the operation. In case of * multi-channel arrays, each channel is processed independently. In the 2nd and * 3rd cases above, the scalar is first converted to the array type.
* * @param src1 first input array or a scalar. * @param src2 second input array or a scalar. * @param dst output array that has the same size and type as the input arrays. * * @see org.opencv.core.Core.bitwise_xor */ public static void bitwise_xor(Mat src1, Mat src2, Mat dst) { bitwise_xor_1(src1.nativeObj, src2.nativeObj, dst.nativeObj); return; } // // C++: void calcCovarMatrix(Mat samples, Mat& covar, Mat& mean, int flags, int ctype = CV_64F) // /** *Calculates the covariance matrix of a set of vectors.
* *The functions calcCovarMatrix
calculate the covariance matrix
* and, optionally, the mean vector of the set of input vectors.
ctype
and
* square size.
* @param mean input or output (depending on the flags) array as the average
* value of the input vectors.
* @param flags operation flags as a combination of the following values:
* -
*
- CV_COVAR_SCRAMBLED The output covariance matrix is calculated as: *
scale * [ vects [0]- mean, vects [1]- mean,...]^T * [ vects [0]- mean, * vects [1]- mean,...],
* *The covariance matrix will be nsamples x nsamples
. Such an
* unusual covariance matrix is used for fast PCA of a set of very large vectors
* (see, for example, the EigenFaces technique for face recognition).
* Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
* covariance matrix. The "true" eigenvectors can be easily calculated from the
* eigenvectors of the "scrambled" covariance matrix.
-
*
- CV_COVAR_NORMAL The output covariance matrix is calculated as: *
scale * [ vects [0]- mean, vects [1]- mean,...] * [ vects [0]- mean, * vects [1]- mean,...]^T,
* *covar
will be a square matrix of the same size as the total
* number of elements in each input vector. One and only one of
* CV_COVAR_SCRAMBLED
and CV_COVAR_NORMAL
must be
* specified.
-
*
- CV_COVAR_USE_AVG If the flag is specified, the function does not
* calculate
mean
from the input vectors but, instead, uses the * passedmean
vector. This is useful ifmean
has been * pre-calculated or known in advance, or if the covariance matrix is calculated * by parts. In this case,mean
is not a mean vector of the input * sub-set of vectors but rather the mean vector of the whole set. * - CV_COVAR_SCALE If the flag is specified, the covariance matrix is
* scaled. In the "normal" mode,
scale
is1./nsamples
. * In the "scrambled" mode,scale
is the reciprocal of the total * number of elements in each input vector. By default (if the flag is not * specified), the covariance matrix is not scaled (scale=1
). * - CV_COVAR_ROWS [Only useful in the second variant of the function] If
* the flag is specified, all the input vectors are stored as rows of the
*
samples
matrix.mean
should be a single-row vector * in this case. * - CV_COVAR_COLS [Only useful in the second variant of the function] If
* the flag is specified, all the input vectors are stored as columns of the
*
samples
matrix.mean
should be a single-column * vector in this case. *
Calculates the covariance matrix of a set of vectors.
* *The functions calcCovarMatrix
calculate the covariance matrix
* and, optionally, the mean vector of the set of input vectors.
ctype
and
* square size.
* @param mean input or output (depending on the flags) array as the average
* value of the input vectors.
* @param flags operation flags as a combination of the following values:
* -
*
- CV_COVAR_SCRAMBLED The output covariance matrix is calculated as: *
scale * [ vects [0]- mean, vects [1]- mean,...]^T * [ vects [0]- mean, * vects [1]- mean,...],
* *The covariance matrix will be nsamples x nsamples
. Such an
* unusual covariance matrix is used for fast PCA of a set of very large vectors
* (see, for example, the EigenFaces technique for face recognition).
* Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
* covariance matrix. The "true" eigenvectors can be easily calculated from the
* eigenvectors of the "scrambled" covariance matrix.
-
*
- CV_COVAR_NORMAL The output covariance matrix is calculated as: *
scale * [ vects [0]- mean, vects [1]- mean,...] * [ vects [0]- mean, * vects [1]- mean,...]^T,
* *covar
will be a square matrix of the same size as the total
* number of elements in each input vector. One and only one of
* CV_COVAR_SCRAMBLED
and CV_COVAR_NORMAL
must be
* specified.
-
*
- CV_COVAR_USE_AVG If the flag is specified, the function does not
* calculate
mean
from the input vectors but, instead, uses the * passedmean
vector. This is useful ifmean
has been * pre-calculated or known in advance, or if the covariance matrix is calculated * by parts. In this case,mean
is not a mean vector of the input * sub-set of vectors but rather the mean vector of the whole set. * - CV_COVAR_SCALE If the flag is specified, the covariance matrix is
* scaled. In the "normal" mode,
scale
is1./nsamples
. * In the "scrambled" mode,scale
is the reciprocal of the total * number of elements in each input vector. By default (if the flag is not * specified), the covariance matrix is not scaled (scale=1
). * - CV_COVAR_ROWS [Only useful in the second variant of the function] If
* the flag is specified, all the input vectors are stored as rows of the
*
samples
matrix.mean
should be a single-row vector * in this case. * - CV_COVAR_COLS [Only useful in the second variant of the function] If
* the flag is specified, all the input vectors are stored as columns of the
*
samples
matrix.mean
should be a single-column * vector in this case. *
Calculates the magnitude and angle of 2D vectors.
* *The function cartToPolar
calculates either the magnitude, angle,
* or both for every 2D vector (x(I),y(I)):
magnitude(I)= sqrt(x(I)^2+y(I)^2), * angle(I)= atan2(y(I), x(I))[ *180 / pi ]
* *The angles are calculated with accuracy about 0.3 degrees. For the point * (0,0), the angle is set to 0.
* * @param x array of x-coordinates; this must be a single-precision or * double-precision floating-point array. * @param y array of y-coordinates, that must have the same size and same type * asx
.
* @param magnitude output array of magnitudes of the same size and type as
* x
.
* @param angle output array of angles that has the same size and type as
* x
; the angles are measured in radians (from 0 to 2*Pi) or in
* degrees (0 to 360 degrees).
* @param angleInDegrees a flag, indicating whether the angles are measured in
* radians (which is by default), or in degrees.
*
* @see org.opencv.core.Core.cartToPolar
* @see org.opencv.imgproc.Imgproc#Scharr
* @see org.opencv.imgproc.Imgproc#Sobel
*/
public static void cartToPolar(Mat x, Mat y, Mat magnitude, Mat angle, boolean angleInDegrees)
{
cartToPolar_0(x.nativeObj, y.nativeObj, magnitude.nativeObj, angle.nativeObj, angleInDegrees);
return;
}
/**
* Calculates the magnitude and angle of 2D vectors.
* *The function cartToPolar
calculates either the magnitude, angle,
* or both for every 2D vector (x(I),y(I)):
magnitude(I)= sqrt(x(I)^2+y(I)^2), * angle(I)= atan2(y(I), x(I))[ *180 / pi ]
* *The angles are calculated with accuracy about 0.3 degrees. For the point * (0,0), the angle is set to 0.
* * @param x array of x-coordinates; this must be a single-precision or * double-precision floating-point array. * @param y array of y-coordinates, that must have the same size and same type * asx
.
* @param magnitude output array of magnitudes of the same size and type as
* x
.
* @param angle output array of angles that has the same size and type as
* x
; the angles are measured in radians (from 0 to 2*Pi) or in
* degrees (0 to 360 degrees).
*
* @see org.opencv.core.Core.cartToPolar
* @see org.opencv.imgproc.Imgproc#Scharr
* @see org.opencv.imgproc.Imgproc#Sobel
*/
public static void cartToPolar(Mat x, Mat y, Mat magnitude, Mat angle)
{
cartToPolar_1(x.nativeObj, y.nativeObj, magnitude.nativeObj, angle.nativeObj);
return;
}
//
// C++: bool checkRange(Mat a, bool quiet = true, _hidden_ * pos = 0, double minVal = -DBL_MAX, double maxVal = DBL_MAX)
//
/**
* Checks every element of an input array for invalid values.
* *The functions checkRange
check that every array element is
* neither NaN nor infinite. When minVal < -DBL_MAX
and
* maxVal < DBL_MAX
, the functions also check that each value is
* between minVal
and maxVal
. In case of multi-channel
* arrays, each channel is processed independently.
* If some values are out of range, position of the first outlier is stored in
* pos
(when pos != NULL
). Then, the functions either
* return false (when quiet=true
) or throw an exception.
Checks every element of an input array for invalid values.
* *The functions checkRange
check that every array element is
* neither NaN nor infinite. When minVal < -DBL_MAX
and
* maxVal < DBL_MAX
, the functions also check that each value is
* between minVal
and maxVal
. In case of multi-channel
* arrays, each channel is processed independently.
* If some values are out of range, position of the first outlier is stored in
* pos
(when pos != NULL
). Then, the functions either
* return false (when quiet=true
) or throw an exception.
Draws a circle.
* *The function circle
draws a simple or filled circle with a given
* center and radius.
Draws a circle.
* *The function circle
draws a simple or filled circle with a given
* center and radius.
Draws a circle.
* *The function circle
draws a simple or filled circle with a given
* center and radius.
Clips the line against the image rectangle.
* *The functions clipLine
calculate a part of the line segment that
* is entirely within the specified rectangle.
* They return false
if the line segment is completely outside the
* rectangle. Otherwise, they return true
.
Performs the per-element comparison of two arrays or an array and scalar * value.
* *The function compares:
*-
*
- Elements of two arrays when
src1
andsrc2
* have the same size: *
dst(I) = src1(I) cmpop src2(I)
* *-
*
- Elements of
src1
with a scalarsrc2
when *src2
is constructed fromScalar
or has a single * element: *
dst(I) = src1(I) cmpop src2
* *-
*
-
src1
with elements ofsrc2
when *src1
is constructed fromScalar
or has a single * element: *
dst(I) = src1 cmpop src2(I)
* *When the comparison result is true, the corresponding element of output array
* is set to 255.The comparison operations can be replaced with the equivalent
* matrix expressions:
// C++ code:
* *Mat dst1 = src1 >= src2;
* *Mat dst2 = src1 < 8;...
* * @param src1 first input array or a scalar (in the case ofcvCmp
,
* cv.Cmp
, cvCmpS
, cv.CmpS
it is always
* an array); when it is an array, it must have a single channel.
* @param src2 second input array or a scalar (in the case of cvCmp
* and cv.Cmp
it is always an array; in the case of
* cvCmpS
, cv.CmpS
it is always a scalar); when it is
* an array, it must have a single channel.
* @param dst output array that has the same size and type as the input arrays.
* @param cmpop a flag, that specifies correspondence between the arrays:
* -
*
- CMP_EQ
src1
is equal tosrc2
. * - CMP_GT
src1
is greater thansrc2
. * - CMP_GE
src1
is greater than or equal tosrc2
. * - CMP_LT
src1
is less thansrc2
. * - CMP_LE
src1
is less than or equal tosrc2
. * - CMP_NE
src1
is unequal tosrc2
. *
Performs the per-element comparison of two arrays or an array and scalar * value.
* *The function compares:
*-
*
- Elements of two arrays when
src1
andsrc2
* have the same size: *
dst(I) = src1(I) cmpop src2(I)
* *-
*
- Elements of
src1
with a scalarsrc2
when *src2
is constructed fromScalar
or has a single * element: *
dst(I) = src1(I) cmpop src2
* *-
*
-
src1
with elements ofsrc2
when *src1
is constructed fromScalar
or has a single * element: *
dst(I) = src1 cmpop src2(I)
* *When the comparison result is true, the corresponding element of output array
* is set to 255.The comparison operations can be replaced with the equivalent
* matrix expressions:
// C++ code:
* *Mat dst1 = src1 >= src2;
* *Mat dst2 = src1 < 8;...
* * @param src1 first input array or a scalar (in the case ofcvCmp
,
* cv.Cmp
, cvCmpS
, cv.CmpS
it is always
* an array); when it is an array, it must have a single channel.
* @param src2 second input array or a scalar (in the case of cvCmp
* and cv.Cmp
it is always an array; in the case of
* cvCmpS
, cv.CmpS
it is always a scalar); when it is
* an array, it must have a single channel.
* @param dst output array that has the same size and type as the input arrays.
* @param cmpop a flag, that specifies correspondence between the arrays:
* -
*
- CMP_EQ
src1
is equal tosrc2
. * - CMP_GT
src1
is greater thansrc2
. * - CMP_GE
src1
is greater than or equal tosrc2
. * - CMP_LT
src1
is less thansrc2
. * - CMP_LE
src1
is less than or equal tosrc2
. * - CMP_NE
src1
is unequal tosrc2
. *
Copies the lower or the upper half of a square matrix to another half.
* *The function completeSymm
copies the lower half of a square
* matrix to its another half. The matrix diagonal remains unchanged:
-
*
- mtx_(ij)=mtx_(ji) for i > j if
lowerToUpper=false
* - mtx_(ij)=mtx_(ji) for i < j if
lowerToUpper=true
*
Copies the lower or the upper half of a square matrix to another half.
* *The function completeSymm
copies the lower half of a square
* matrix to its another half. The matrix diagonal remains unchanged:
-
*
- mtx_(ij)=mtx_(ji) for i > j if
lowerToUpper=false
* - mtx_(ij)=mtx_(ji) for i < j if
lowerToUpper=true
*
Scales, calculates absolute values, and converts the result to 8-bit.
* *On each element of the input array, the function convertScaleAbs
* performs three operations sequentially: scaling, taking an absolute value,
* conversion to an unsigned 8-bit type:
dst(I)= saturate_cast<uchar>(| src(I)* alpha + beta|)<BR>In case
* of multi-channel arrays, the function processes each channel independently.
* When the output is not 8-bit, the operation can be emulated by calling the
* Mat.convertTo
method(or by using matrix expressions) and then
* by calculating an absolute value of the result. For example:
* <BR><code>
// C++ code:
* *Mat_
randu(A, Scalar(-100), Scalar(100));
* *Mat_
B = abs(B);
* *// Mat_
// but it will allocate a temporary matrix
* * @param src input array. * @param dst output array. * @param alpha optional scale factor. * @param beta optional delta added to the scaled values. * * @see org.opencv.core.Core.convertScaleAbs * @see org.opencv.core.Mat#convertTo */ public static void convertScaleAbs(Mat src, Mat dst, double alpha, double beta) { convertScaleAbs_0(src.nativeObj, dst.nativeObj, alpha, beta); return; } /** *Scales, calculates absolute values, and converts the result to 8-bit.
* *On each element of the input array, the function convertScaleAbs
* performs three operations sequentially: scaling, taking an absolute value,
* conversion to an unsigned 8-bit type:
dst(I)= saturate_cast<uchar>(| src(I)* alpha + beta|)<BR>In case
* of multi-channel arrays, the function processes each channel independently.
* When the output is not 8-bit, the operation can be emulated by calling the
* Mat.convertTo
method(or by using matrix expressions) and then
* by calculating an absolute value of the result. For example:
* <BR><code>
// C++ code:
* *Mat_
randu(A, Scalar(-100), Scalar(100));
* *Mat_
B = abs(B);
* *// Mat_
// but it will allocate a temporary matrix
* * @param src input array. * @param dst output array. * * @see org.opencv.core.Core.convertScaleAbs * @see org.opencv.core.Mat#convertTo */ public static void convertScaleAbs(Mat src, Mat dst) { convertScaleAbs_1(src.nativeObj, dst.nativeObj); return; } // // C++: int countNonZero(Mat src) // /** *Counts non-zero array elements.
* *The function returns the number of non-zero elements in src
:
sum(by: I: src(I) != 0) 1
* * @param src single-channel array. * * @see org.opencv.core.Core.countNonZero * @see org.opencv.core.Core#minMaxLoc * @see org.opencv.core.Core#calcCovarMatrix * @see org.opencv.core.Core#meanStdDev * @see org.opencv.core.Core#norm * @see org.opencv.core.Core#mean */ public static int countNonZero(Mat src) { int retVal = countNonZero_0(src.nativeObj); return retVal; } // // C++: float cubeRoot(float val) // /** *Computes the cube root of an argument.
* *The function cubeRoot
computes sqrt3(val). Negative
* arguments are handled correctly. NaN and Inf are not handled. The accuracy
* approaches the maximum possible accuracy for single-precision data.
Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
* *The function dct
performs a forward or inverse discrete Cosine
* transform (DCT) of a 1D or 2D floating-point array:
-
*
- Forward Cosine transform of a 1D vector of
N
elements: *
Y = C^N * X
* *where
* *C^N_(jk)= sqrt(alpha_j/N) cos((pi(2k+1)j)/(2N))
* *and
* *alpha_0=1, alpha_j=2 for *j > 0*.
*-
*
- Inverse Cosine transform of a 1D vector of
N
elements: *
X = (C^N)^(-1) * Y = (C^N)^T * Y
* *(since C^N is an orthogonal matrix, C^N * (C^N)^T = I)
*-
*
- Forward 2D Cosine transform of
M x N
matrix: *
Y = C^N * X * (C^N)^T
* *-
*
- Inverse 2D Cosine transform of
M x N
matrix: *
X = (C^N)^T * X * C^N
* *The function chooses the mode of operation by looking at the flags and size * of the input array:
*-
*
- If
(flags & DCT_INVERSE) == 0
, the function does a * forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform. * - If
(flags & DCT_ROWS) != 0
, the function performs a 1D * transform of each row. * - If the array is a single column or a single row, the function performs * a 1D transform. *
- If none of the above is true, the function performs a 2D transform. *
Note:
* *Currently dct
supports even-size arrays (2, 4, 6...). For data
* analysis and approximation, you can pad the array when necessary.
Also, the function performance depends very much, and not monotonically, on
* the array size (see"getOptimalDFTSize"). In the current implementation DCT of
* a vector of size N
is calculated via DFT of a vector of size
* N/2
. Thus, the optimal DCT size N1 >= N
can be
* calculated as:
// C++ code:
* *size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
* *N1 = getOptimalDCTSize(N);
* * * * @param src input floating-point array. * @param dst output array of the same size and type assrc
.
* @param flags transformation flags as a combination of the following values:
* -
*
- DCT_INVERSE performs an inverse 1D or 2D transform instead of the * default forward transform. *
- DCT_ROWS performs a forward or inverse transform of every individual * row of the input matrix. This flag enables you to transform multiple vectors * simultaneously and can be used to decrease the overhead (which is sometimes * several times larger than the processing itself) to perform 3D and * higher-dimensional transforms and so forth. *
Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
* *The function dct
performs a forward or inverse discrete Cosine
* transform (DCT) of a 1D or 2D floating-point array:
-
*
- Forward Cosine transform of a 1D vector of
N
elements: *
Y = C^N * X
* *where
* *C^N_(jk)= sqrt(alpha_j/N) cos((pi(2k+1)j)/(2N))
* *and
* *alpha_0=1, alpha_j=2 for *j > 0*.
*-
*
- Inverse Cosine transform of a 1D vector of
N
elements: *
X = (C^N)^(-1) * Y = (C^N)^T * Y
* *(since C^N is an orthogonal matrix, C^N * (C^N)^T = I)
*-
*
- Forward 2D Cosine transform of
M x N
matrix: *
Y = C^N * X * (C^N)^T
* *-
*
- Inverse 2D Cosine transform of
M x N
matrix: *
X = (C^N)^T * X * C^N
* *The function chooses the mode of operation by looking at the flags and size * of the input array:
*-
*
- If
(flags & DCT_INVERSE) == 0
, the function does a * forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform. * - If
(flags & DCT_ROWS) != 0
, the function performs a 1D * transform of each row. * - If the array is a single column or a single row, the function performs * a 1D transform. *
- If none of the above is true, the function performs a 2D transform. *
Note:
* *Currently dct
supports even-size arrays (2, 4, 6...). For data
* analysis and approximation, you can pad the array when necessary.
Also, the function performance depends very much, and not monotonically, on
* the array size (see"getOptimalDFTSize"). In the current implementation DCT of
* a vector of size N
is calculated via DFT of a vector of size
* N/2
. Thus, the optimal DCT size N1 >= N
can be
* calculated as:
// C++ code:
* *size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
* *N1 = getOptimalDCTSize(N);
* * * * @param src input floating-point array. * @param dst output array of the same size and type assrc
.
*
* @see org.opencv.core.Core.dct
* @see org.opencv.core.Core#dft
* @see org.opencv.core.Core#idct
* @see org.opencv.core.Core#getOptimalDFTSize
*/
public static void dct(Mat src, Mat dst)
{
dct_1(src.nativeObj, dst.nativeObj);
return;
}
//
// C++: double determinant(Mat mtx)
//
/**
* Returns the determinant of a square floating-point matrix.
* *The function determinant
calculates and returns the determinant
* of the specified matrix. For small matrices (mtx.cols=mtx.rows<=3
),
* the direct method is used. For larger matrices, the function uses LU
* factorization with partial pivoting.
For symmetric positively-determined matrices, it is also possible to use * "eigen" decomposition to calculate the determinant.
* * @param mtx input matrix that must haveCV_32FC1
or
* CV_64FC1
type and square size.
*
* @see org.opencv.core.Core.determinant
* @see org.opencv.core.Core#invert
* @see org.opencv.core.Core#solve
* @see org.opencv.core.Core#eigen
* @see org.opencv.core.Core#trace
*/
public static double determinant(Mat mtx)
{
double retVal = determinant_0(mtx.nativeObj);
return retVal;
}
//
// C++: void dft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0)
//
/**
* Performs a forward or inverse Discrete Fourier transform of a 1D or 2D * floating-point array.
* *The function performs one of the following:
*-
*
- Forward the Fourier transform of a 1D vector of
N
* elements: *
Y = F^N * X,
* *where F^N_(jk)=exp(-2pi i j k/N) and i=sqrt(-1)
*-
*
- Inverse the Fourier transform of a 1D vector of
N
* elements: *
X'= (F^N)^(-1) * Y = (F^N)^* * y * X = (1/N) * X,
* *where F^*=(Re(F^N)-Im(F^N))^T
*-
*
- Forward the 2D Fourier transform of a
M x N
matrix: *
Y = F^M * X * F^N
* *-
*
- Inverse the 2D Fourier transform of a
M x N
matrix: *
X'= (F^M)^* * Y * (F^N)^* * X = 1/(M * N) * X'
* *In case of real (single-channel) data, the output spectrum of the forward * Fourier transform or input spectrum of the inverse Fourier transform can be * represented in a packed format called *CCS* (complex-conjugate-symmetrical). * It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D * *CCS* spectrum looks:
* *Re Y_(0,0) Re Y_(0,1) Im Y_(0,1) Re Y_(0,2) Im Y_(0,2) *s Re Y_(0,N/2-1) * Im Y_(0,N/2-1) Re Y_(0,N/2) * Re Y_(1,0) Re Y_(1,1) Im Y_(1,1) Re Y_(1,2) Im Y_(1,2) *s Re Y_(1,N/2-1) Im * Y_(1,N/2-1) Re Y_(1,N/2) * Im Y_(1,0) Re Y_(2,1) Im Y_(2,1) Re Y_(2,2) Im Y_(2,2) *s Re Y_(2,N/2-1) Im * Y_(2,N/2-1) Im Y_(1,N/2)........................... * Re Y_(M/2-1,0) Re Y_(M-3,1) Im Y_(M-3,1)......... Re Y_(M-3,N/2-1) Im * Y_(M-3,N/2-1) Re Y_(M/2-1,N/2) * Im Y_(M/2-1,0) Re Y_(M-2,1) Im Y_(M-2,1)......... Re Y_(M-2,N/2-1) Im * Y_(M-2,N/2-1) Im Y_(M/2-1,N/2) * Re Y_(M/2,0) Re Y_(M-1,1) Im Y_(M-1,1)......... Re Y_(M-1,N/2-1) Im * Y_(M-1,N/2-1) Re Y_(M/2,N/2)
* *In case of 1D transform of a real vector, the output looks like the first row * of the matrix above.
* *So, the function chooses an operation mode depending on the flags and size of * the input array:
*-
*
- If
DFT_ROWS
is set or the input array has a single row or * single column, the function performs a 1D forward or inverse transform of * each row of a matrix whenDFT_ROWS
is set. Otherwise, it * performs a 2D transform. * - If the input array is real and
DFT_INVERSE
is not set, * the function performs a forward 1D or 2D transform: * - When
DFT_COMPLEX_OUTPUT
is set, the output is a complex * matrix of the same size as input. * - When
DFT_COMPLEX_OUTPUT
is not set, the output is a real * matrix of the same size as input. In case of 2D transform, it uses the packed * format as shown above. In case of a single 1D transform, it looks like the * first row of the matrix above. In case of multiple 1D transforms (when using * theDFT_ROWS
flag), each row of the output matrix looks like the * first row of the matrix above. * - If the input array is complex and either
DFT_INVERSE
or *DFT_REAL_OUTPUT
are not set, the output is a complex array of * the same size as input. The function performs a forward or inverse 1D or 2D * transform of the whole input array or each row of the input array * independently, depending on the flagsDFT_INVERSE
and *DFT_ROWS
. * - When
DFT_INVERSE
is set and the input array is real, or * it is complex butDFT_REAL_OUTPUT
is set, the output is a real * array of the same size as input. The function performs a 1D or 2D inverse * transformation of the whole input array or each individual row, depending on * the flagsDFT_INVERSE
andDFT_ROWS
. *
If DFT_SCALE
is set, the scaling is done after the
* transformation.
Unlike "dct", the function supports arrays of arbitrary size. But only those
* arrays are processed efficiently, whose sizes can be factorized in a product
* of small prime numbers (2, 3, and 5 in the current implementation). Such an
* efficient DFT size can be calculated using the "getOptimalDFTSize" method.
* The sample below illustrates how to calculate a DFT-based convolution of two
* 2D real arrays:
// C++ code:
* *void convolveDFT(InputArray A, InputArray B, OutputArray C)
* * *// reallocate the output array if needed
* *C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
* *Size dftSize;
* *// calculate the size of DFT transform
* *dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
* *dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
* *// allocate temporary buffers and initialize them with 0's
* *Mat tempA(dftSize, A.type(), Scalar.all(0));
* *Mat tempB(dftSize, B.type(), Scalar.all(0));
* *// copy A and B to the top-left corners of tempA and tempB, respectively
* *Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
* *A.copyTo(roiA);
* *Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
* *B.copyTo(roiB);
* *// now transform the padded A & B in-place;
* *// use "nonzeroRows" hint for faster processing
* *dft(tempA, tempA, 0, A.rows);
* *dft(tempB, tempB, 0, B.rows);
* *// multiply the spectrums;
* *// the function handles packed spectrum representations well
* *mulSpectrums(tempA, tempB, tempA);
* *// transform the product back from the frequency domain.
* *// Even though all the result rows will be non-zero,
* *// you need only the first C.rows of them, and thus you
* *// pass nonzeroRows == C.rows
* *dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
* *// now copy the result back to C.
* *tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
* *// all the temporary buffers will be deallocated automatically
* * *To optimize this sample, consider the following approaches:
*-
*
- Since
nonzeroRows != 0
is passed to the forward transform * calls and sinceA
andB
are copied to the top-left * corners oftempA
andtempB
, respectively, it is not * necessary to clear the wholetempA
andtempB
. It is * only necessary to clear thetempA.cols - A.cols
* (tempB.cols - B.cols
) rightmost columns of the matrices. * - This DFT-based convolution does not have to be applied to the whole
* big arrays, especially if
B
is significantly smaller than *A
or vice versa. Instead, you can calculate convolution by * parts. To do this, you need to split the output arrayC
into * multiple tiles. For each tile, estimate which parts ofA
and *B
are required to calculate convolution in this tile. If the * tiles inC
are too small, the speed will decrease a lot because * of repeated work. In the ultimate case, when each tile inC
is a * single pixel, the algorithm becomes equivalent to the naive convolution * algorithm. If the tiles are too big, the temporary arraystempA
* andtempB
become too big and there is also a slowdown because of * bad cache locality. So, there is an optimal tile size somewhere in the * middle. * - If different tiles in
C
can be calculated in parallel * and, thus, the convolution is done by parts, the loop can be threaded. *
All of the above improvements have been implemented in "matchTemplate" and
* "filter2D". Therefore, by using them, you can get the performance even better
* than with the above theoretically optimal implementation. Though, those two
* functions actually calculate cross-correlation, not convolution, so you need
* to "flip" the second convolution operand B
vertically and
* horizontally using "flip".
Note:
*-
*
- An example using the discrete fourier transform can be found at * opencv_source_code/samples/cpp/dft.cpp *
- (Python) An example using the dft functionality to perform Wiener * deconvolution can be found at opencv_source/samples/python2/deconvolution.py *
- (Python) An example rearranging the quadrants of a Fourier image can * be found at opencv_source/samples/python2/dft.py *
flags
.
* @param flags transformation flags, representing a combination of the
* following values:
* -
*
- DFT_INVERSE performs an inverse 1D or 2D transform instead of the * default forward transform. *
- DFT_SCALE scales the result: divide it by the number of array
* elements. Normally, it is combined with
DFT_INVERSE
. * - DFT_ROWS performs a forward or inverse transform of every individual * row of the input matrix; this flag enables you to transform multiple vectors * simultaneously and can be used to decrease the overhead (which is sometimes * several times larger than the processing itself) to perform 3D and * higher-dimensional transformations and so forth. *
- DFT_COMPLEX_OUTPUT performs a forward transformation of 1D or 2D real * array; the result, though being a complex array, has complex-conjugate * symmetry (*CCS*, see the function description below for details), and such an * array can be packed into a real array of the same size as input, which is the * fastest option and which is what the function does by default; however, you * may wish to get a full complex array (for simpler spectrum analysis, and so * on) - pass the flag to enable the function to produce a full-size complex * output array. *
- DFT_REAL_OUTPUT performs an inverse transformation of a 1D or 2D
* complex array; the result is normally a complex array of the same size,
* however, if the input array has conjugate-complex symmetry (for example, it
* is a result of forward transformation with
DFT_COMPLEX_OUTPUT
* flag), the output is a real array; while the function itself does not check * whether the input is symmetrical or not, you can pass the flag and then the * function will assume the symmetry and produce the real output array (note * that when the input is packed into a real array and inverse transformation is * executed, the function treats the input as a packed complex-conjugate * symmetrical array, and the output will also be a real array). *
nonzeroRows
rows of the input array
* (DFT_INVERSE
is not set) or only the first nonzeroRows
* of the output array (DFT_INVERSE
is set) contain non-zeros,
* thus, the function can handle the rest of the rows more efficiently and save
* some time; this technique is very useful for calculating array
* cross-correlation or convolution using DFT.
*
* @see org.opencv.core.Core.dft
* @see org.opencv.imgproc.Imgproc#matchTemplate
* @see org.opencv.core.Core#mulSpectrums
* @see org.opencv.core.Core#cartToPolar
* @see org.opencv.core.Core#flip
* @see org.opencv.core.Core#magnitude
* @see org.opencv.core.Core#phase
* @see org.opencv.core.Core#dct
* @see org.opencv.imgproc.Imgproc#filter2D
* @see org.opencv.core.Core#getOptimalDFTSize
*/
public static void dft(Mat src, Mat dst, int flags, int nonzeroRows)
{
dft_0(src.nativeObj, dst.nativeObj, flags, nonzeroRows);
return;
}
/**
* Performs a forward or inverse Discrete Fourier transform of a 1D or 2D * floating-point array.
* *The function performs one of the following:
*-
*
- Forward the Fourier transform of a 1D vector of
N
* elements: *
Y = F^N * X,
* *where F^N_(jk)=exp(-2pi i j k/N) and i=sqrt(-1)
*-
*
- Inverse the Fourier transform of a 1D vector of
N
* elements: *
X'= (F^N)^(-1) * Y = (F^N)^* * y * X = (1/N) * X,
* *where F^*=(Re(F^N)-Im(F^N))^T
*-
*
- Forward the 2D Fourier transform of a
M x N
matrix: *
Y = F^M * X * F^N
* *-
*
- Inverse the 2D Fourier transform of a
M x N
matrix: *
X'= (F^M)^* * Y * (F^N)^* * X = 1/(M * N) * X'
* *In case of real (single-channel) data, the output spectrum of the forward * Fourier transform or input spectrum of the inverse Fourier transform can be * represented in a packed format called *CCS* (complex-conjugate-symmetrical). * It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D * *CCS* spectrum looks:
* *Re Y_(0,0) Re Y_(0,1) Im Y_(0,1) Re Y_(0,2) Im Y_(0,2) *s Re Y_(0,N/2-1) * Im Y_(0,N/2-1) Re Y_(0,N/2) * Re Y_(1,0) Re Y_(1,1) Im Y_(1,1) Re Y_(1,2) Im Y_(1,2) *s Re Y_(1,N/2-1) Im * Y_(1,N/2-1) Re Y_(1,N/2) * Im Y_(1,0) Re Y_(2,1) Im Y_(2,1) Re Y_(2,2) Im Y_(2,2) *s Re Y_(2,N/2-1) Im * Y_(2,N/2-1) Im Y_(1,N/2)........................... * Re Y_(M/2-1,0) Re Y_(M-3,1) Im Y_(M-3,1)......... Re Y_(M-3,N/2-1) Im * Y_(M-3,N/2-1) Re Y_(M/2-1,N/2) * Im Y_(M/2-1,0) Re Y_(M-2,1) Im Y_(M-2,1)......... Re Y_(M-2,N/2-1) Im * Y_(M-2,N/2-1) Im Y_(M/2-1,N/2) * Re Y_(M/2,0) Re Y_(M-1,1) Im Y_(M-1,1)......... Re Y_(M-1,N/2-1) Im * Y_(M-1,N/2-1) Re Y_(M/2,N/2)
* *In case of 1D transform of a real vector, the output looks like the first row * of the matrix above.
* *So, the function chooses an operation mode depending on the flags and size of * the input array:
*-
*
- If
DFT_ROWS
is set or the input array has a single row or * single column, the function performs a 1D forward or inverse transform of * each row of a matrix whenDFT_ROWS
is set. Otherwise, it * performs a 2D transform. * - If the input array is real and
DFT_INVERSE
is not set, * the function performs a forward 1D or 2D transform: * - When
DFT_COMPLEX_OUTPUT
is set, the output is a complex * matrix of the same size as input. * - When
DFT_COMPLEX_OUTPUT
is not set, the output is a real * matrix of the same size as input. In case of 2D transform, it uses the packed * format as shown above. In case of a single 1D transform, it looks like the * first row of the matrix above. In case of multiple 1D transforms (when using * theDFT_ROWS
flag), each row of the output matrix looks like the * first row of the matrix above. * - If the input array is complex and either
DFT_INVERSE
or *DFT_REAL_OUTPUT
are not set, the output is a complex array of * the same size as input. The function performs a forward or inverse 1D or 2D * transform of the whole input array or each row of the input array * independently, depending on the flagsDFT_INVERSE
and *DFT_ROWS
. * - When
DFT_INVERSE
is set and the input array is real, or * it is complex butDFT_REAL_OUTPUT
is set, the output is a real * array of the same size as input. The function performs a 1D or 2D inverse * transformation of the whole input array or each individual row, depending on * the flagsDFT_INVERSE
andDFT_ROWS
. *
If DFT_SCALE
is set, the scaling is done after the
* transformation.
Unlike "dct", the function supports arrays of arbitrary size. But only those
* arrays are processed efficiently, whose sizes can be factorized in a product
* of small prime numbers (2, 3, and 5 in the current implementation). Such an
* efficient DFT size can be calculated using the "getOptimalDFTSize" method.
* The sample below illustrates how to calculate a DFT-based convolution of two
* 2D real arrays:
// C++ code:
* *void convolveDFT(InputArray A, InputArray B, OutputArray C)
* * *// reallocate the output array if needed
* *C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
* *Size dftSize;
* *// calculate the size of DFT transform
* *dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
* *dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
* *// allocate temporary buffers and initialize them with 0's
* *Mat tempA(dftSize, A.type(), Scalar.all(0));
* *Mat tempB(dftSize, B.type(), Scalar.all(0));
* *// copy A and B to the top-left corners of tempA and tempB, respectively
* *Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
* *A.copyTo(roiA);
* *Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
* *B.copyTo(roiB);
* *// now transform the padded A & B in-place;
* *// use "nonzeroRows" hint for faster processing
* *dft(tempA, tempA, 0, A.rows);
* *dft(tempB, tempB, 0, B.rows);
* *// multiply the spectrums;
* *// the function handles packed spectrum representations well
* *mulSpectrums(tempA, tempB, tempA);
* *// transform the product back from the frequency domain.
* *// Even though all the result rows will be non-zero,
* *// you need only the first C.rows of them, and thus you
* *// pass nonzeroRows == C.rows
* *dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
* *// now copy the result back to C.
* *tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
* *// all the temporary buffers will be deallocated automatically
* * *To optimize this sample, consider the following approaches:
*-
*
- Since
nonzeroRows != 0
is passed to the forward transform * calls and sinceA
andB
are copied to the top-left * corners oftempA
andtempB
, respectively, it is not * necessary to clear the wholetempA
andtempB
. It is * only necessary to clear thetempA.cols - A.cols
* (tempB.cols - B.cols
) rightmost columns of the matrices. * - This DFT-based convolution does not have to be applied to the whole
* big arrays, especially if
B
is significantly smaller than *A
or vice versa. Instead, you can calculate convolution by * parts. To do this, you need to split the output arrayC
into * multiple tiles. For each tile, estimate which parts ofA
and *B
are required to calculate convolution in this tile. If the * tiles inC
are too small, the speed will decrease a lot because * of repeated work. In the ultimate case, when each tile inC
is a * single pixel, the algorithm becomes equivalent to the naive convolution * algorithm. If the tiles are too big, the temporary arraystempA
* andtempB
become too big and there is also a slowdown because of * bad cache locality. So, there is an optimal tile size somewhere in the * middle. * - If different tiles in
C
can be calculated in parallel * and, thus, the convolution is done by parts, the loop can be threaded. *
All of the above improvements have been implemented in "matchTemplate" and
* "filter2D". Therefore, by using them, you can get the performance even better
* than with the above theoretically optimal implementation. Though, those two
* functions actually calculate cross-correlation, not convolution, so you need
* to "flip" the second convolution operand B
vertically and
* horizontally using "flip".
Note:
*-
*
- An example using the discrete fourier transform can be found at * opencv_source_code/samples/cpp/dft.cpp *
- (Python) An example using the dft functionality to perform Wiener * deconvolution can be found at opencv_source/samples/python2/deconvolution.py *
- (Python) An example rearranging the quadrants of a Fourier image can * be found at opencv_source/samples/python2/dft.py *
flags
.
*
* @see org.opencv.core.Core.dft
* @see org.opencv.imgproc.Imgproc#matchTemplate
* @see org.opencv.core.Core#mulSpectrums
* @see org.opencv.core.Core#cartToPolar
* @see org.opencv.core.Core#flip
* @see org.opencv.core.Core#magnitude
* @see org.opencv.core.Core#phase
* @see org.opencv.core.Core#dct
* @see org.opencv.imgproc.Imgproc#filter2D
* @see org.opencv.core.Core#getOptimalDFTSize
*/
public static void dft(Mat src, Mat dst)
{
dft_1(src.nativeObj, dst.nativeObj);
return;
}
//
// C++: void divide(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1)
//
/**
* Performs per-element division of two arrays or a scalar by an array.
* *The functions divide
divide one array by another:
dst(I) = saturate(src1(I)*scale/src2(I))
* *or a scalar by an array when there is no src1
:
dst(I) = saturate(scale/src2(I))
* *When src2(I)
is zero, dst(I)
will also be zero.
* Different channels of multi-channel arrays are processed independently.
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src2
.
* @param scale scalar factor.
* @param dtype optional depth of the output array; if -1
,
* dst
will have depth src2.depth()
, but in case of an
* array-by-array division, you can only pass -1
when
* src1.depth()==src2.depth()
.
*
* @see org.opencv.core.Core.divide
* @see org.opencv.core.Core#multiply
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#subtract
*/
public static void divide(Mat src1, Mat src2, Mat dst, double scale, int dtype)
{
divide_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale, dtype);
return;
}
/**
* Performs per-element division of two arrays or a scalar by an array.
* *The functions divide
divide one array by another:
dst(I) = saturate(src1(I)*scale/src2(I))
* *or a scalar by an array when there is no src1
:
dst(I) = saturate(scale/src2(I))
* *When src2(I)
is zero, dst(I)
will also be zero.
* Different channels of multi-channel arrays are processed independently.
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src2
.
* @param scale scalar factor.
*
* @see org.opencv.core.Core.divide
* @see org.opencv.core.Core#multiply
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#subtract
*/
public static void divide(Mat src1, Mat src2, Mat dst, double scale)
{
divide_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale);
return;
}
/**
* Performs per-element division of two arrays or a scalar by an array.
* *The functions divide
divide one array by another:
dst(I) = saturate(src1(I)*scale/src2(I))
* *or a scalar by an array when there is no src1
:
dst(I) = saturate(scale/src2(I))
* *When src2(I)
is zero, dst(I)
will also be zero.
* Different channels of multi-channel arrays are processed independently.
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src2
.
*
* @see org.opencv.core.Core.divide
* @see org.opencv.core.Core#multiply
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#subtract
*/
public static void divide(Mat src1, Mat src2, Mat dst)
{
divide_2(src1.nativeObj, src2.nativeObj, dst.nativeObj);
return;
}
//
// C++: void divide(double scale, Mat src2, Mat& dst, int dtype = -1)
//
/**
* Performs per-element division of two arrays or a scalar by an array.
* *The functions divide
divide one array by another:
dst(I) = saturate(src1(I)*scale/src2(I))
* *or a scalar by an array when there is no src1
:
dst(I) = saturate(scale/src2(I))
* *When src2(I)
is zero, dst(I)
will also be zero.
* Different channels of multi-channel arrays are processed independently.
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src2
.
* @param dtype optional depth of the output array; if -1
,
* dst
will have depth src2.depth()
, but in case of an
* array-by-array division, you can only pass -1
when
* src1.depth()==src2.depth()
.
*
* @see org.opencv.core.Core.divide
* @see org.opencv.core.Core#multiply
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#subtract
*/
public static void divide(double scale, Mat src2, Mat dst, int dtype)
{
divide_3(scale, src2.nativeObj, dst.nativeObj, dtype);
return;
}
/**
* Performs per-element division of two arrays or a scalar by an array.
* *The functions divide
divide one array by another:
dst(I) = saturate(src1(I)*scale/src2(I))
* *or a scalar by an array when there is no src1
:
dst(I) = saturate(scale/src2(I))
* *When src2(I)
is zero, dst(I)
will also be zero.
* Different channels of multi-channel arrays are processed independently.
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src2
.
*
* @see org.opencv.core.Core.divide
* @see org.opencv.core.Core#multiply
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#subtract
*/
public static void divide(double scale, Mat src2, Mat dst)
{
divide_4(scale, src2.nativeObj, dst.nativeObj);
return;
}
//
// C++: void divide(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1)
//
/**
* Performs per-element division of two arrays or a scalar by an array.
* *The functions divide
divide one array by another:
dst(I) = saturate(src1(I)*scale/src2(I))
* *or a scalar by an array when there is no src1
:
dst(I) = saturate(scale/src2(I))
* *When src2(I)
is zero, dst(I)
will also be zero.
* Different channels of multi-channel arrays are processed independently.
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src2
.
* @param scale scalar factor.
* @param dtype optional depth of the output array; if -1
,
* dst
will have depth src2.depth()
, but in case of an
* array-by-array division, you can only pass -1
when
* src1.depth()==src2.depth()
.
*
* @see org.opencv.core.Core.divide
* @see org.opencv.core.Core#multiply
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#subtract
*/
public static void divide(Mat src1, Scalar src2, Mat dst, double scale, int dtype)
{
divide_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale, dtype);
return;
}
/**
* Performs per-element division of two arrays or a scalar by an array.
* *The functions divide
divide one array by another:
dst(I) = saturate(src1(I)*scale/src2(I))
* *or a scalar by an array when there is no src1
:
dst(I) = saturate(scale/src2(I))
* *When src2(I)
is zero, dst(I)
will also be zero.
* Different channels of multi-channel arrays are processed independently.
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src2
.
* @param scale scalar factor.
*
* @see org.opencv.core.Core.divide
* @see org.opencv.core.Core#multiply
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#subtract
*/
public static void divide(Mat src1, Scalar src2, Mat dst, double scale)
{
divide_6(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale);
return;
}
/**
* Performs per-element division of two arrays or a scalar by an array.
* *The functions divide
divide one array by another:
dst(I) = saturate(src1(I)*scale/src2(I))
* *or a scalar by an array when there is no src1
:
dst(I) = saturate(scale/src2(I))
* *When src2(I)
is zero, dst(I)
will also be zero.
* Different channels of multi-channel arrays are processed independently.
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src2
.
*
* @see org.opencv.core.Core.divide
* @see org.opencv.core.Core#multiply
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#subtract
*/
public static void divide(Mat src1, Scalar src2, Mat dst)
{
divide_7(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);
return;
}
//
// C++: bool eigen(Mat src, bool computeEigenvectors, Mat& eigenvalues, Mat& eigenvectors)
//
/**
* Calculates eigenvalues and eigenvectors of a symmetric matrix.
* *The functions eigen
calculate just eigenvalues, or eigenvalues
* and eigenvectors of the symmetric matrix src
:
// C++ code:
* *src*eigenvectors.row(i).t() = eigenvalues.at
Note: in the new and the old interfaces different ordering of eigenvalues and * eigenvectors parameters is used. *
* * @param src input matrix that must haveCV_32FC1
or
* CV_64FC1
type, square size and be symmetrical (src
^"T"
* == src
).
* @param computeEigenvectors a computeEigenvectors
* @param eigenvalues output vector of eigenvalues of the same type as
* src
; the eigenvalues are stored in the descending order.
* @param eigenvectors output matrix of eigenvectors; it has the same size and
* type as src
; the eigenvectors are stored as subsequent matrix
* rows, in the same order as the corresponding eigenvalues.
*
* @see org.opencv.core.Core.eigen
* @see org.opencv.core.Core#completeSymm
*/
public static boolean eigen(Mat src, boolean computeEigenvectors, Mat eigenvalues, Mat eigenvectors)
{
boolean retVal = eigen_0(src.nativeObj, computeEigenvectors, eigenvalues.nativeObj, eigenvectors.nativeObj);
return retVal;
}
//
// C++: void ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
//
/**
* Draws a simple or thick elliptic arc or fills an ellipse sector.
* *The functions ellipse
with less parameters draw an ellipse
* outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
* A piecewise-linear curve is used to approximate the elliptic arc boundary. If
* you need more control of the ellipse rendering, you can retrieve the curve
* using "ellipse2Poly" and then render it with "polylines" or fill it with
* "fillPoly". If you use the first variant of the function and want to draw the
* whole ellipse, not an arc, pass startAngle=0
and
* endAngle=360
. The figure below explains the meaning of the
* parameters.
* Figure 1. Parameters of Elliptic Arc
Draws a simple or thick elliptic arc or fills an ellipse sector.
* *The functions ellipse
with less parameters draw an ellipse
* outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
* A piecewise-linear curve is used to approximate the elliptic arc boundary. If
* you need more control of the ellipse rendering, you can retrieve the curve
* using "ellipse2Poly" and then render it with "polylines" or fill it with
* "fillPoly". If you use the first variant of the function and want to draw the
* whole ellipse, not an arc, pass startAngle=0
and
* endAngle=360
. The figure below explains the meaning of the
* parameters.
* Figure 1. Parameters of Elliptic Arc
Draws a simple or thick elliptic arc or fills an ellipse sector.
* *The functions ellipse
with less parameters draw an ellipse
* outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
* A piecewise-linear curve is used to approximate the elliptic arc boundary. If
* you need more control of the ellipse rendering, you can retrieve the curve
* using "ellipse2Poly" and then render it with "polylines" or fill it with
* "fillPoly". If you use the first variant of the function and want to draw the
* whole ellipse, not an arc, pass startAngle=0
and
* endAngle=360
. The figure below explains the meaning of the
* parameters.
* Figure 1. Parameters of Elliptic Arc
Draws a simple or thick elliptic arc or fills an ellipse sector.
* *The functions ellipse
with less parameters draw an ellipse
* outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
* A piecewise-linear curve is used to approximate the elliptic arc boundary. If
* you need more control of the ellipse rendering, you can retrieve the curve
* using "ellipse2Poly" and then render it with "polylines" or fill it with
* "fillPoly". If you use the first variant of the function and want to draw the
* whole ellipse, not an arc, pass startAngle=0
and
* endAngle=360
. The figure below explains the meaning of the
* parameters.
* Figure 1. Parameters of Elliptic Arc
CvBox2D
. This means that the function draws an ellipse inscribed
* in the rotated rectangle.
* @param color Ellipse color.
* @param thickness Thickness of the ellipse arc outline, if positive.
* Otherwise, this indicates that a filled ellipse sector is to be drawn.
* @param lineType Type of the ellipse boundary. See the "line" description.
*
* @see org.opencv.core.Core.ellipse
*/
public static void ellipse(Mat img, RotatedRect box, Scalar color, int thickness, int lineType)
{
ellipse_3(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);
return;
}
/**
* Draws a simple or thick elliptic arc or fills an ellipse sector.
* *The functions ellipse
with less parameters draw an ellipse
* outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
* A piecewise-linear curve is used to approximate the elliptic arc boundary. If
* you need more control of the ellipse rendering, you can retrieve the curve
* using "ellipse2Poly" and then render it with "polylines" or fill it with
* "fillPoly". If you use the first variant of the function and want to draw the
* whole ellipse, not an arc, pass startAngle=0
and
* endAngle=360
. The figure below explains the meaning of the
* parameters.
* Figure 1. Parameters of Elliptic Arc
CvBox2D
. This means that the function draws an ellipse inscribed
* in the rotated rectangle.
* @param color Ellipse color.
* @param thickness Thickness of the ellipse arc outline, if positive.
* Otherwise, this indicates that a filled ellipse sector is to be drawn.
*
* @see org.opencv.core.Core.ellipse
*/
public static void ellipse(Mat img, RotatedRect box, Scalar color, int thickness)
{
ellipse_4(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
return;
}
/**
* Draws a simple or thick elliptic arc or fills an ellipse sector.
* *The functions ellipse
with less parameters draw an ellipse
* outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
* A piecewise-linear curve is used to approximate the elliptic arc boundary. If
* you need more control of the ellipse rendering, you can retrieve the curve
* using "ellipse2Poly" and then render it with "polylines" or fill it with
* "fillPoly". If you use the first variant of the function and want to draw the
* whole ellipse, not an arc, pass startAngle=0
and
* endAngle=360
. The figure below explains the meaning of the
* parameters.
* Figure 1. Parameters of Elliptic Arc
CvBox2D
. This means that the function draws an ellipse inscribed
* in the rotated rectangle.
* @param color Ellipse color.
*
* @see org.opencv.core.Core.ellipse
*/
public static void ellipse(Mat img, RotatedRect box, Scalar color)
{
ellipse_5(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3]);
return;
}
//
// C++: void ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts)
//
/**
* Approximates an elliptic arc with a polyline.
* *The function ellipse2Poly
computes the vertices of a polyline
* that approximates the specified elliptic arc. It is used by "ellipse".
Calculates the exponent of every array element.
* *The function exp
calculates the exponent of every element of the
* input array:
dst [I] = e^(src(I))
* *The maximum relative error is about 7e-6
for single-precision
* input and less than 1e-10
for double-precision input. Currently,
* the function converts denormalized values to zeros on output. Special values
* (NaN, Inf) are not handled.
src
.
*
* @see org.opencv.core.Core.exp
* @see org.opencv.core.Core#log
* @see org.opencv.core.Core#cartToPolar
* @see org.opencv.core.Core#pow
* @see org.opencv.core.Core#sqrt
* @see org.opencv.core.Core#magnitude
* @see org.opencv.core.Core#polarToCart
* @see org.opencv.core.Core#phase
*/
public static void exp(Mat src, Mat dst)
{
exp_0(src.nativeObj, dst.nativeObj);
return;
}
//
// C++: void extractChannel(Mat src, Mat& dst, int coi)
//
public static void extractChannel(Mat src, Mat dst, int coi)
{
extractChannel_0(src.nativeObj, dst.nativeObj, coi);
return;
}
//
// C++: float fastAtan2(float y, float x)
//
/**
* Calculates the angle of a 2D vector in degrees.
* *The function fastAtan2
calculates the full-range angle of an
* input 2D vector. The angle is measured in degrees and varies from 0 to 360
* degrees. The accuracy is about 0.3 degrees.
Fills a convex polygon.
* *The function fillConvexPoly
draws a filled convex polygon.
* This function is much faster than the function fillPoly
. It can
* fill not only convex polygons but any monotonic polygon without
* self-intersections, that is, a polygon whose contour intersects every
* horizontal line (scan line) twice at the most (though, its top-most and/or
* the bottom edge could be horizontal).
Fills a convex polygon.
* *The function fillConvexPoly
draws a filled convex polygon.
* This function is much faster than the function fillPoly
. It can
* fill not only convex polygons but any monotonic polygon without
* self-intersections, that is, a polygon whose contour intersects every
* horizontal line (scan line) twice at the most (though, its top-most and/or
* the bottom edge could be horizontal).
Fills the area bounded by one or more polygons.
* *The function fillPoly
fills an area bounded by several polygonal
* contours. The function can fill complex areas, for example, areas with holes,
* contours with self-intersections (some of their parts), and so forth.
Fills the area bounded by one or more polygons.
* *The function fillPoly
fills an area bounded by several polygonal
* contours. The function can fill complex areas, for example, areas with holes,
* contours with self-intersections (some of their parts), and so forth.
Flips a 2D array around vertical, horizontal, or both axes.
* *The function flip
flips the array in one of three different ways
* (row and column indices are 0-based):
dst _(ij) =<BR> <= ft(<BR> ltBR gtsrc _(src.rows-i-1,j) if * flipCode = 0 * ltBR gtsrc _(i, src.cols -j-1) if flipCode gt 0 * ltBR gtsrc _(src.rows -i-1, src.cols -j-1) if flipCode lt 0 * ltBR gt<BR>right.
* *The example scenarios of using the function are the following:
*-
*
- Vertical flipping of the image (
flipCode == 0
) to switch * between top-left and bottom-left image origin. This is a typical operation in * video processing on Microsoft Windows* OS. * - Horizontal flipping of the image with the subsequent horizontal shift
* and absolute difference calculation to check for a vertical-axis symmetry
* (
flipCode > 0
). * - Simultaneous horizontal and vertical flipping of the image with the
* subsequent shift and absolute difference calculation to check for a central
* symmetry (
flipCode < 0
). * - Reversing the order of point arrays (
flipCode > 0
or *flipCode == 0
). *
src
.
* @param flipCode a flag to specify how to flip the array; 0 means flipping
* around the x-axis and positive value (for example, 1) means flipping around
* y-axis. Negative value (for example, -1) means flipping around both axes (see
* the discussion below for the formulas).
*
* @see org.opencv.core.Core.flip
* @see org.opencv.core.Core#repeat
* @see org.opencv.core.Core#transpose
* @see org.opencv.core.Core#completeSymm
*/
public static void flip(Mat src, Mat dst, int flipCode)
{
flip_0(src.nativeObj, dst.nativeObj, flipCode);
return;
}
//
// C++: void gemm(Mat src1, Mat src2, double alpha, Mat src3, double gamma, Mat& dst, int flags = 0)
//
/**
* Performs generalized matrix multiplication.
* *The function performs generalized matrix multiplication similar to the
* gemm
functions in BLAS level 3. For example, gemm(src1,
* src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)
corresponds to
dst = alpha * src1 ^T * src2 + beta * src3 ^T<BR>The function can be * replaced with a matrix expression. For example, the above call can be * replaced with: <BR><code>
* *// C++ code:
* *dst = alpha*src1.t()*src2 + beta*src3.t();
* * * * @param src1 first multiplied input matrix that should haveCV_32FC1
,
* CV_64FC1
, CV_32FC2
, or CV_64FC2
type.
* @param src2 second multiplied input matrix of the same type as
* src1
.
* @param alpha weight of the matrix product.
* @param src3 third optional delta matrix added to the matrix product; it
* should have the same type as src1
and src2
.
* @param gamma a gamma
* @param dst output matrix; it has the proper size and the same type as input
* matrices.
* @param flags operation flags:
* -
*
- GEMM_1_T transposes
src1
. * - GEMM_2_T transposes
src2
. * - GEMM_3_T transposes
src3
. *
Performs generalized matrix multiplication.
* *The function performs generalized matrix multiplication similar to the
* gemm
functions in BLAS level 3. For example, gemm(src1,
* src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)
corresponds to
dst = alpha * src1 ^T * src2 + beta * src3 ^T<BR>The function can be * replaced with a matrix expression. For example, the above call can be * replaced with: <BR><code>
* *// C++ code:
* *dst = alpha*src1.t()*src2 + beta*src3.t();
* * * * @param src1 first multiplied input matrix that should haveCV_32FC1
,
* CV_64FC1
, CV_32FC2
, or CV_64FC2
type.
* @param src2 second multiplied input matrix of the same type as
* src1
.
* @param alpha weight of the matrix product.
* @param src3 third optional delta matrix added to the matrix product; it
* should have the same type as src1
and src2
.
* @param gamma a gamma
* @param dst output matrix; it has the proper size and the same type as input
* matrices.
*
* @see org.opencv.core.Core.gemm
* @see org.opencv.core.Core#mulTransposed
* @see org.opencv.core.Core#transform
*/
public static void gemm(Mat src1, Mat src2, double alpha, Mat src3, double gamma, Mat dst)
{
gemm_1(src1.nativeObj, src2.nativeObj, alpha, src3.nativeObj, gamma, dst.nativeObj);
return;
}
//
// C++: string getBuildInformation()
//
/**
* Returns full configuration time cmake output.
* *Returned value is raw cmake output including version control system revision, * compiler version, compiler flags, enabled modules and third party libraries, * etc. Output format depends on target architecture.
* * @see org.opencv.core.Core.getBuildInformation */ public static String getBuildInformation() { String retVal = getBuildInformation_0(); return retVal; } // // C++: int64 getCPUTickCount() // /** *Returns the number of CPU ticks.
* *The function returns the current number of CPU ticks on some architectures
* (such as x86, x64, PowerPC). On other platforms the function is equivalent to
* getTickCount
. It can also be used for very accurate time
* measurements, as well as for RNG initialization. Note that in case of
* multi-CPU systems a thread, from which getCPUTickCount
is
* called, can be suspended and resumed at another CPU with its own counter. So,
* theoretically (and practically) the subsequent calls to the function do not
* necessary return the monotonously increasing values. Also, since a modern CPU
* varies the CPU frequency depending on the load, the number of CPU clocks
* spent in some code cannot be directly converted to time units. Therefore,
* getTickCount
is generally a preferable solution for measuring
* execution time.
Returns the number of logical CPUs available for the process.
* * @see org.opencv.core.Core.getNumberOfCPUs */ public static int getNumberOfCPUs() { int retVal = getNumberOfCPUs_0(); return retVal; } // // C++: int getOptimalDFTSize(int vecsize) // /** *Returns the optimal DFT size for a given vector size.
* *DFT performance is not a monotonic function of a vector size. Therefore, when * you calculate convolution of two arrays or perform the spectral analysis of * an array, it usually makes sense to pad the input data with zeros to get a * bit larger array that can be transformed much faster than the original one. * Arrays whose size is a power-of-two (2, 4, 8, 16, 32,...) are the fastest to * process. Though, the arrays whose size is a product of 2's, 3's, and 5's (for * example, 300 = 5*5*3*2*2) are also processed quite efficiently.
* *The function getOptimalDFTSize
returns the minimum number
* N
that is greater than or equal to vecsize
so that
* the DFT of a vector of size N
can be processed efficiently. In
* the current implementation N
= 2^"p" * 3^"q" * 5^"r" for some
* integer p
, q
, r
.
The function returns a negative number if vecsize
is too large
* (very close to INT_MAX
).
While the function cannot be used directly to estimate the optimal vector
* size for DCT transform (since the current DCT implementation supports only
* even-size vectors), it can be easily processed as getOptimalDFTSize((vecsize+1)/2)*2
.
Returns the number of ticks.
* *The function returns the number of ticks after the certain event (for * example, when the machine was turned on). * It can be used to initialize "RNG" or to measure a function execution time by * reading the tick count before and after the function call. See also the tick * frequency.
* * @see org.opencv.core.Core.getTickCount */ public static long getTickCount() { long retVal = getTickCount_0(); return retVal; } // // C++: double getTickFrequency() // /** *Returns the number of ticks per second.
* *The function returns the number of ticks per second.That is, the following
* code computes the execution time in seconds:
// C++ code:
* *double t = (double)getTickCount();
* *// do something...
* *t = ((double)getTickCount() - t)/getTickFrequency();
* * @see org.opencv.core.Core.getTickFrequency */ public static double getTickFrequency() { double retVal = getTickFrequency_0(); return retVal; } // // C++: void hconcat(vector_Mat src, Mat& dst) // public static void hconcat(ListCalculates the inverse Discrete Cosine Transform of a 1D or 2D array.
* *idct(src, dst, flags)
is equivalent to dct(src, dst, flags
* | DCT_INVERSE)
.
src
.
* @param flags operation flags.
*
* @see org.opencv.core.Core.idct
* @see org.opencv.core.Core#dft
* @see org.opencv.core.Core#dct
* @see org.opencv.core.Core#getOptimalDFTSize
* @see org.opencv.core.Core#idft
*/
public static void idct(Mat src, Mat dst, int flags)
{
idct_0(src.nativeObj, dst.nativeObj, flags);
return;
}
/**
* Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
* *idct(src, dst, flags)
is equivalent to dct(src, dst, flags
* | DCT_INVERSE)
.
src
.
*
* @see org.opencv.core.Core.idct
* @see org.opencv.core.Core#dft
* @see org.opencv.core.Core#dct
* @see org.opencv.core.Core#getOptimalDFTSize
* @see org.opencv.core.Core#idft
*/
public static void idct(Mat src, Mat dst)
{
idct_1(src.nativeObj, dst.nativeObj);
return;
}
//
// C++: void idft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0)
//
/**
* Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
* *idft(src, dst, flags)
is equivalent to dft(src, dst, flags
* | DFT_INVERSE)
.
See "dft" for details.
* *Note: None of dft
and idft
scales the result by
* default. So, you should pass DFT_SCALE
to one of
* dft
or idft
explicitly to make these transforms
* mutually inverse.
flags
.
* @param flags operation flags (see "dft").
* @param nonzeroRows number of dst
rows to process; the rest of
* the rows have undefined content (see the convolution sample in "dft"
* description.
*
* @see org.opencv.core.Core.idft
* @see org.opencv.core.Core#dft
* @see org.opencv.core.Core#dct
* @see org.opencv.core.Core#getOptimalDFTSize
* @see org.opencv.core.Core#idct
* @see org.opencv.core.Core#mulSpectrums
*/
public static void idft(Mat src, Mat dst, int flags, int nonzeroRows)
{
idft_0(src.nativeObj, dst.nativeObj, flags, nonzeroRows);
return;
}
/**
* Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
* *idft(src, dst, flags)
is equivalent to dft(src, dst, flags
* | DFT_INVERSE)
.
See "dft" for details.
* *Note: None of dft
and idft
scales the result by
* default. So, you should pass DFT_SCALE
to one of
* dft
or idft
explicitly to make these transforms
* mutually inverse.
flags
.
*
* @see org.opencv.core.Core.idft
* @see org.opencv.core.Core#dft
* @see org.opencv.core.Core#dct
* @see org.opencv.core.Core#getOptimalDFTSize
* @see org.opencv.core.Core#idct
* @see org.opencv.core.Core#mulSpectrums
*/
public static void idft(Mat src, Mat dst)
{
idft_1(src.nativeObj, dst.nativeObj);
return;
}
//
// C++: void inRange(Mat src, Scalar lowerb, Scalar upperb, Mat& dst)
//
/**
* Checks if array elements lie between the elements of two other arrays.
* *The function checks the range as follows:
*-
*
- For every element of a single-channel input array: *
dst(I)= lowerb(I)_0 <= src(I)_0 <= upperb(I)_0
* *-
*
- For two-channel arrays: *
dst(I)= lowerb(I)_0 <= src(I)_0 <= upperb(I)_0 land lowerb(I)_1 <= * src(I)_1 <= upperb(I)_1
* *-
*
- and so forth. *
That is, dst
(I) is set to 255 (all 1
-bits) if
* src
(I) is within the specified 1D, 2D, 3D,... box and 0
* otherwise.
When the lower and/or upper boundary parameters are scalars, the indexes
* (I)
at lowerb
and upperb
in the above
* formulas should be omitted.
src
and
* CV_8U
type.
*
* @see org.opencv.core.Core.inRange
*/
public static void inRange(Mat src, Scalar lowerb, Scalar upperb, Mat dst)
{
inRange_0(src.nativeObj, lowerb.val[0], lowerb.val[1], lowerb.val[2], lowerb.val[3], upperb.val[0], upperb.val[1], upperb.val[2], upperb.val[3], dst.nativeObj);
return;
}
//
// C++: void insertChannel(Mat src, Mat& dst, int coi)
//
public static void insertChannel(Mat src, Mat dst, int coi)
{
insertChannel_0(src.nativeObj, dst.nativeObj, coi);
return;
}
//
// C++: double invert(Mat src, Mat& dst, int flags = DECOMP_LU)
//
/**
* Finds the inverse or pseudo-inverse of a matrix.
* *The function invert
inverts the matrix src
and
* stores the result in dst
.
* When the matrix src
is singular or non-square, the function
* calculates the pseudo-inverse matrix (the dst
matrix) so that
* norm(src*dst - I)
is minimal, where I is an identity matrix.
In case of the DECOMP_LU
method, the function returns non-zero
* value if the inverse has been successfully calculated and 0 if
* src
is singular.
In case of the DECOMP_SVD
method, the function returns the
* inverse condition number of src
(the ratio of the smallest
* singular value to the largest singular value) and 0 if src
is
* singular. The SVD method calculates a pseudo-inverse matrix if
* src
is singular.
Similarly to DECOMP_LU
, the method DECOMP_CHOLESKY
* works only with non-singular square matrices that should also be symmetrical
* and positively defined. In this case, the function stores the inverted matrix
* in dst
and returns non-zero. Otherwise, it returns 0.
M x N
matrix.
* @param dst output matrix of N x M
size and the same type as
* src
.
* @param flags inversion method :
* -
*
- DECOMP_LU Gaussian elimination with the optimal pivot element chosen. *
- DECOMP_SVD singular value decomposition (SVD) method. *
- DECOMP_CHOLESKY Cholesky decomposition; the matrix must be symmetrical * and positively defined. *
Finds the inverse or pseudo-inverse of a matrix.
* *The function invert
inverts the matrix src
and
* stores the result in dst
.
* When the matrix src
is singular or non-square, the function
* calculates the pseudo-inverse matrix (the dst
matrix) so that
* norm(src*dst - I)
is minimal, where I is an identity matrix.
In case of the DECOMP_LU
method, the function returns non-zero
* value if the inverse has been successfully calculated and 0 if
* src
is singular.
In case of the DECOMP_SVD
method, the function returns the
* inverse condition number of src
(the ratio of the smallest
* singular value to the largest singular value) and 0 if src
is
* singular. The SVD method calculates a pseudo-inverse matrix if
* src
is singular.
Similarly to DECOMP_LU
, the method DECOMP_CHOLESKY
* works only with non-singular square matrices that should also be symmetrical
* and positively defined. In this case, the function stores the inverted matrix
* in dst
and returns non-zero. Otherwise, it returns 0.
M x N
matrix.
* @param dst output matrix of N x M
size and the same type as
* src
.
*
* @see org.opencv.core.Core.invert
* @see org.opencv.core.Core#solve
*/
public static double invert(Mat src, Mat dst)
{
double retVal = invert_1(src.nativeObj, dst.nativeObj);
return retVal;
}
//
// C++: double kmeans(Mat data, int K, Mat& bestLabels, TermCriteria criteria, int attempts, int flags, Mat& centers = Mat())
//
/**
* Finds centers of clusters and groups input samples around the clusters.
* *The function kmeans
implements a k-means algorithm that finds
* the centers of cluster_count
clusters and groups the input
* samples around the clusters. As an output, labels_i contains a
* 0-based cluster index for the sample stored in the i^(th) row of the
* samples
matrix.
The function returns the compactness measure that is computed as
* *sum _i|samples _i - centers _(labels _i)| ^2
* *after every attempt. The best (minimum) value is chosen and the corresponding
* labels and the compactness value are returned by the function.
* Basically, you can use only the core of the function, set the number of
* attempts to 1, initialize labels each time using a custom algorithm, pass
* them with the (flags
= KMEANS_USE_INITIAL_LABELS
)
* flag, and then choose the best (most-compact) clustering.
Note:
*-
*
- An example on K-means clustering can be found at opencv_source_code/samples/cpp/kmeans.cpp *
- (Python) An example on K-means clustering can be found at * opencv_source_code/samples/python2/kmeans.py *
criteria.epsilon
. As soon as each of the cluster centers
* moves by less than criteria.epsilon
on some iteration, the
* algorithm stops.
* @param attempts Flag to specify the number of times the algorithm is executed
* using different initial labellings. The algorithm returns the labels that
* yield the best compactness (see the last function parameter).
* @param flags Flag that can take the following values:
* -
*
- KMEANS_RANDOM_CENTERS Select random initial centers in each attempt. *
- KMEANS_PP_CENTERS Use
kmeans++
center initialization by * Arthur and Vassilvitskii [Arthur2007]. * - KMEANS_USE_INITIAL_LABELS During the first (and possibly the only)
* attempt, use the user-supplied labels instead of computing them from the
* initial centers. For the second and further attempts, use the random or
* semi-random centers. Use one of
KMEANS_*_CENTERS
flag to specify * the exact method. *
Finds centers of clusters and groups input samples around the clusters.
* *The function kmeans
implements a k-means algorithm that finds
* the centers of cluster_count
clusters and groups the input
* samples around the clusters. As an output, labels_i contains a
* 0-based cluster index for the sample stored in the i^(th) row of the
* samples
matrix.
The function returns the compactness measure that is computed as
* *sum _i|samples _i - centers _(labels _i)| ^2
* *after every attempt. The best (minimum) value is chosen and the corresponding
* labels and the compactness value are returned by the function.
* Basically, you can use only the core of the function, set the number of
* attempts to 1, initialize labels each time using a custom algorithm, pass
* them with the (flags
= KMEANS_USE_INITIAL_LABELS
)
* flag, and then choose the best (most-compact) clustering.
Note:
*-
*
- An example on K-means clustering can be found at opencv_source_code/samples/cpp/kmeans.cpp *
- (Python) An example on K-means clustering can be found at * opencv_source_code/samples/python2/kmeans.py *
criteria.epsilon
. As soon as each of the cluster centers
* moves by less than criteria.epsilon
on some iteration, the
* algorithm stops.
* @param attempts Flag to specify the number of times the algorithm is executed
* using different initial labellings. The algorithm returns the labels that
* yield the best compactness (see the last function parameter).
* @param flags Flag that can take the following values:
* -
*
- KMEANS_RANDOM_CENTERS Select random initial centers in each attempt. *
- KMEANS_PP_CENTERS Use
kmeans++
center initialization by * Arthur and Vassilvitskii [Arthur2007]. * - KMEANS_USE_INITIAL_LABELS During the first (and possibly the only)
* attempt, use the user-supplied labels instead of computing them from the
* initial centers. For the second and further attempts, use the random or
* semi-random centers. Use one of
KMEANS_*_CENTERS
flag to specify * the exact method. *
Draws a line segment connecting two points.
* *The function line
draws the line segment between
* pt1
and pt2
points in the image. The line is
* clipped by the image boundaries. For non-antialiased lines with integer
* coordinates, the 8-connected or 4-connected Bresenham algorithm is used.
* Thick lines are drawn with rounding endings.
* Antialiased lines are drawn using Gaussian filtering. To specify the line
* color, you may use the macro CV_RGB(r, g, b)
.
-
*
- 8 (or omitted) - 8-connected line. *
- 4 - 4-connected line. *
- CV_AA - antialiased line. *
Draws a line segment connecting two points.
* *The function line
draws the line segment between
* pt1
and pt2
points in the image. The line is
* clipped by the image boundaries. For non-antialiased lines with integer
* coordinates, the 8-connected or 4-connected Bresenham algorithm is used.
* Thick lines are drawn with rounding endings.
* Antialiased lines are drawn using Gaussian filtering. To specify the line
* color, you may use the macro CV_RGB(r, g, b)
.
Draws a line segment connecting two points.
* *The function line
draws the line segment between
* pt1
and pt2
points in the image. The line is
* clipped by the image boundaries. For non-antialiased lines with integer
* coordinates, the 8-connected or 4-connected Bresenham algorithm is used.
* Thick lines are drawn with rounding endings.
* Antialiased lines are drawn using Gaussian filtering. To specify the line
* color, you may use the macro CV_RGB(r, g, b)
.
Calculates the natural logarithm of every array element.
* *The function log
calculates the natural logarithm of the
* absolute value of every element of the input array:
dst(I) = log|src(I)| if src(I) != 0 ; C otherwise
* *where C
is a large negative number (about -700 in the current
* implementation).
* The maximum relative error is about 7e-6
for single-precision
* input and less than 1e-10
for double-precision input. Special
* values (NaN, Inf) are not handled.
src
.
*
* @see org.opencv.core.Core.log
* @see org.opencv.core.Core#cartToPolar
* @see org.opencv.core.Core#pow
* @see org.opencv.core.Core#sqrt
* @see org.opencv.core.Core#magnitude
* @see org.opencv.core.Core#polarToCart
* @see org.opencv.core.Core#exp
* @see org.opencv.core.Core#phase
*/
public static void log(Mat src, Mat dst)
{
log_0(src.nativeObj, dst.nativeObj);
return;
}
//
// C++: void magnitude(Mat x, Mat y, Mat& magnitude)
//
/**
* Calculates the magnitude of 2D vectors.
* *The function magnitude
calculates the magnitude of 2D vectors
* formed from the corresponding elements of x
and y
* arrays:
dst(I) = sqrt(x(I)^2 + y(I)^2)
* * @param x floating-point array of x-coordinates of the vectors. * @param y floating-point array of y-coordinates of the vectors; it must have * the same size asx
.
* @param magnitude output array of the same size and type as x
.
*
* @see org.opencv.core.Core.magnitude
* @see org.opencv.core.Core#cartToPolar
* @see org.opencv.core.Core#phase
* @see org.opencv.core.Core#sqrt
* @see org.opencv.core.Core#polarToCart
*/
public static void magnitude(Mat x, Mat y, Mat magnitude)
{
magnitude_0(x.nativeObj, y.nativeObj, magnitude.nativeObj);
return;
}
//
// C++: void max(Mat src1, Mat src2, Mat& dst)
//
/**
* Calculates per-element maximum of two arrays or an array and a scalar.
* *The functions max
calculate the per-element maximum of two
* arrays:
dst(I)= max(src1(I), src2(I))
* *or array and a scalar:
* *dst(I)= max(src1(I), value)
* *In the second variant, when the input array is multi-channel, each channel is
* compared with value
independently.
The first 3 variants of the function listed above are actually a part of * "MatrixExpressions". They return an expression object that can be further * either transformed/ assigned to a matrix, or passed to a function, and so on.
* * @param src1 first input array. * @param src2 second input array of the same size and type assrc1
.
* @param dst output array of the same size and type as src1
.
*
* @see org.opencv.core.Core.max
* @see org.opencv.core.Core#compare
* @see org.opencv.core.Core#inRange
* @see org.opencv.core.Core#minMaxLoc
* @see org.opencv.core.Core#min
*/
public static void max(Mat src1, Mat src2, Mat dst)
{
max_0(src1.nativeObj, src2.nativeObj, dst.nativeObj);
return;
}
//
// C++: void max(Mat src1, Scalar src2, Mat& dst)
//
/**
* Calculates per-element maximum of two arrays or an array and a scalar.
* *The functions max
calculate the per-element maximum of two
* arrays:
dst(I)= max(src1(I), src2(I))
* *or array and a scalar:
* *dst(I)= max(src1(I), value)
* *In the second variant, when the input array is multi-channel, each channel is
* compared with value
independently.
The first 3 variants of the function listed above are actually a part of * "MatrixExpressions". They return an expression object that can be further * either transformed/ assigned to a matrix, or passed to a function, and so on.
* * @param src1 first input array. * @param src2 second input array of the same size and type assrc1
.
* @param dst output array of the same size and type as src1
.
*
* @see org.opencv.core.Core.max
* @see org.opencv.core.Core#compare
* @see org.opencv.core.Core#inRange
* @see org.opencv.core.Core#minMaxLoc
* @see org.opencv.core.Core#min
*/
public static void max(Mat src1, Scalar src2, Mat dst)
{
max_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);
return;
}
//
// C++: Scalar mean(Mat src, Mat mask = Mat())
//
/**
* Calculates an average (mean) of array elements.
* *The function mean
calculates the mean value M
of
* array elements, independently for each channel, and return it:
N = sum(by: I: mask(I) != 0) 1 * M_c = (sum(by: I: mask(I) != 0)(mtx(I)_c))/N
* *When all the mask elements are 0's, the functions return Scalar.all(0)
.
Calculates an average (mean) of array elements.
* *The function mean
calculates the mean value M
of
* array elements, independently for each channel, and return it:
N = sum(by: I: mask(I) != 0) 1 * M_c = (sum(by: I: mask(I) != 0)(mtx(I)_c))/N
* *When all the mask elements are 0's, the functions return Scalar.all(0)
.
Calculates a mean and standard deviation of array elements.
* *The function meanStdDev
calculates the mean and the standard
* deviation M
of array elements independently for each channel and
* returns it via the output parameters:
N = sum(by: I, mask(I) != 0) 1 * mean _c = (sum_(I: mask(I) != 0) src(I)_c)/(N) * stddev _c = sqrt((sum_(I: mask(I) != 0)(src(I)_c - mean _c)^2)/(N))
* *When all the mask elements are 0's, the functions return mean=stddev=Scalar.all(0)
.
Note: The calculated standard deviation is only the diagonal of the complete
* normalized covariance matrix. If the full matrix is needed, you can reshape
* the multi-channel array M x N
to the single-channel array
* M*N x mtx.channels()
(only possible when the matrix is
* continuous) and then pass the matrix to "calcCovarMatrix".
Calculates a mean and standard deviation of array elements.
* *The function meanStdDev
calculates the mean and the standard
* deviation M
of array elements independently for each channel and
* returns it via the output parameters:
N = sum(by: I, mask(I) != 0) 1 * mean _c = (sum_(I: mask(I) != 0) src(I)_c)/(N) * stddev _c = sqrt((sum_(I: mask(I) != 0)(src(I)_c - mean _c)^2)/(N))
* *When all the mask elements are 0's, the functions return mean=stddev=Scalar.all(0)
.
Note: The calculated standard deviation is only the diagonal of the complete
* normalized covariance matrix. If the full matrix is needed, you can reshape
* the multi-channel array M x N
to the single-channel array
* M*N x mtx.channels()
(only possible when the matrix is
* continuous) and then pass the matrix to "calcCovarMatrix".
Creates one multichannel array out of several single-channel ones.
* *The functions merge
merge several arrays to make a single
* multi-channel array. That is, each element of the output array will be a
* concatenation of the elements of the input arrays, where elements of i-th
* input array are treated as mv[i].channels()
-element vectors.
The function "split" does the reverse operation. If you need to shuffle * channels in some other advanced way, use "mixChannels".
* * @param mv input array or vector of matrices to be merged; all the matrices in *mv
must have the same size and the same depth.
* @param dst output array of the same size and the same depth as
* mv[0]
; The number of channels will be the total number of
* channels in the matrix array.
*
* @see org.opencv.core.Core.merge
* @see org.opencv.core.Mat#reshape
* @see org.opencv.core.Core#mixChannels
* @see org.opencv.core.Core#split
*/
public static void merge(ListCalculates per-element minimum of two arrays or an array and a scalar.
* *The functions min
calculate the per-element minimum of two
* arrays:
dst(I)= min(src1(I), src2(I))
* *or array and a scalar:
* *dst(I)= min(src1(I), value)
* *In the second variant, when the input array is multi-channel, each channel is
* compared with value
independently.
The first three variants of the function listed above are actually a part of * "MatrixExpressions". They return the expression object that can be further * either transformed/assigned to a matrix, or passed to a function, and so on.
* * @param src1 first input array. * @param src2 second input array of the same size and type assrc1
.
* @param dst output array of the same size and type as src1
.
*
* @see org.opencv.core.Core.min
* @see org.opencv.core.Core#max
* @see org.opencv.core.Core#compare
* @see org.opencv.core.Core#inRange
* @see org.opencv.core.Core#minMaxLoc
*/
public static void min(Mat src1, Mat src2, Mat dst)
{
min_0(src1.nativeObj, src2.nativeObj, dst.nativeObj);
return;
}
//
// C++: void min(Mat src1, Scalar src2, Mat& dst)
//
/**
* Calculates per-element minimum of two arrays or an array and a scalar.
* *The functions min
calculate the per-element minimum of two
* arrays:
dst(I)= min(src1(I), src2(I))
* *or array and a scalar:
* *dst(I)= min(src1(I), value)
* *In the second variant, when the input array is multi-channel, each channel is
* compared with value
independently.
The first three variants of the function listed above are actually a part of * "MatrixExpressions". They return the expression object that can be further * either transformed/assigned to a matrix, or passed to a function, and so on.
* * @param src1 first input array. * @param src2 second input array of the same size and type assrc1
.
* @param dst output array of the same size and type as src1
.
*
* @see org.opencv.core.Core.min
* @see org.opencv.core.Core#max
* @see org.opencv.core.Core#compare
* @see org.opencv.core.Core#inRange
* @see org.opencv.core.Core#minMaxLoc
*/
public static void min(Mat src1, Scalar src2, Mat dst)
{
min_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);
return;
}
//
// C++: void mixChannels(vector_Mat src, vector_Mat dst, vector_int fromTo)
//
/**
* Copies specified channels from input arrays to the specified channels of * output arrays.
* *The functions mixChannels
provide an advanced mechanism for
* shuffling image channels.
"split" and "merge" and some forms of "cvtColor" are partial cases of
* mixChannels
.
* In the example below, the code splits a 4-channel RGBA image into a 3-channel
* BGR (with R and B channels swapped) and a separate alpha-channel image:
*
// C++ code:
* *Mat rgba(100, 100, CV_8UC4, Scalar(1,2,3,4));
* *Mat bgr(rgba.rows, rgba.cols, CV_8UC3);
* *Mat alpha(rgba.rows, rgba.cols, CV_8UC1);
* *// forming an array of matrices is a quite efficient operation,
* *// because the matrix data is not copied, only the headers
* *Mat out[] = { bgr, alpha };
* *// rgba[0] -> bgr[2], rgba[1] -> bgr[1],
* *// rgba[2] -> bgr[0], rgba[3] -> alpha[0]
* *int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
* *mixChannels(&rgba, 1, out, 2, from_to, 4);
* *Note: Unlike many other new-style C++ functions in OpenCV (see the
* introduction section and "Mat.create"), mixChannels
requires
* the output arrays to be pre-allocated before calling the function.
*
src[0]
.
* @param fromTo array of index pairs specifying which channels are copied and
* where; fromTo[k*2]
is a 0-based index of the input channel in
* src
, fromTo[k*2+1]
is an index of the output
* channel in dst
; the continuous channel numbering is used: the
* first input image channels are indexed from 0
to
* src[0].channels()-1
, the second input image channels are indexed
* from src[0].channels()
to src[0].channels() +
* src[1].channels()-1
, and so on, the same scheme is used for the output
* image channels; as a special case, when fromTo[k*2]
is negative,
* the corresponding output channel is filled with zero.
*
* @see org.opencv.core.Core.mixChannels
* @see org.opencv.core.Core#merge
* @see org.opencv.core.Core#split
* @see org.opencv.imgproc.Imgproc#cvtColor
*/
public static void mixChannels(ListPerforms the per-element multiplication of two Fourier spectrums.
* *The function mulSpectrums
performs the per-element
* multiplication of the two CCS-packed or complex matrices that are results of
* a real or complex Fourier transform.
The function, together with "dft" and "idft", may be used to calculate
* convolution (pass conjB=false
) or correlation (pass
* conjB=true
) of two arrays rapidly. When the arrays are complex,
* they are simply multiplied (per element) with an optional conjugation of the
* second-array elements. When the arrays are real, they are assumed to be
* CCS-packed (see "dft" for details).
DFT_ROWS
, which indicates that each row of src1
and
* src2
is an independent 1D Fourier spectrum.
* @param conjB optional flag that conjugates the second input array before the
* multiplication (true) or not (false).
*
* @see org.opencv.core.Core.mulSpectrums
*/
public static void mulSpectrums(Mat a, Mat b, Mat c, int flags, boolean conjB)
{
mulSpectrums_0(a.nativeObj, b.nativeObj, c.nativeObj, flags, conjB);
return;
}
/**
* Performs the per-element multiplication of two Fourier spectrums.
* *The function mulSpectrums
performs the per-element
* multiplication of the two CCS-packed or complex matrices that are results of
* a real or complex Fourier transform.
The function, together with "dft" and "idft", may be used to calculate
* convolution (pass conjB=false
) or correlation (pass
* conjB=true
) of two arrays rapidly. When the arrays are complex,
* they are simply multiplied (per element) with an optional conjugation of the
* second-array elements. When the arrays are real, they are assumed to be
* CCS-packed (see "dft" for details).
DFT_ROWS
, which indicates that each row of src1
and
* src2
is an independent 1D Fourier spectrum.
*
* @see org.opencv.core.Core.mulSpectrums
*/
public static void mulSpectrums(Mat a, Mat b, Mat c, int flags)
{
mulSpectrums_1(a.nativeObj, b.nativeObj, c.nativeObj, flags);
return;
}
//
// C++: void mulTransposed(Mat src, Mat& dst, bool aTa, Mat delta = Mat(), double scale = 1, int dtype = -1)
//
/**
* Calculates the product of a matrix and its transposition.
* *The function mulTransposed
calculates the product of
* src
and its transposition:
dst = scale(src - delta)^T(src - delta)
* *if aTa=true
, and
dst = scale(src - delta)(src - delta)^T
* *otherwise. The function is used to calculate the covariance matrix. With zero
* delta, it can be used as a faster substitute for general matrix product
* A*B
when B=A'
src
before
* the multiplication. When the matrix is empty (delta=noArray()
),
* it is assumed to be zero, that is, nothing is subtracted. If it has the same
* size as src
, it is simply subtracted. Otherwise, it is
* "repeated" (see "repeat") to cover the full src
and then
* subtracted. Type of the delta matrix, when it is not empty, must be the same
* as the type of created output matrix. See the dtype
parameter
* description below.
* @param scale Optional scale factor for the matrix product.
* @param dtype Optional type of the output matrix. When it is negative, the
* output matrix will have the same type as src
. Otherwise, it will
* be type=CV_MAT_DEPTH(dtype)
that should be either
* CV_32F
or CV_64F
.
*
* @see org.opencv.core.Core.mulTransposed
* @see org.opencv.core.Core#calcCovarMatrix
* @see org.opencv.core.Core#repeat
* @see org.opencv.core.Core#reduce
* @see org.opencv.core.Core#gemm
*/
public static void mulTransposed(Mat src, Mat dst, boolean aTa, Mat delta, double scale, int dtype)
{
mulTransposed_0(src.nativeObj, dst.nativeObj, aTa, delta.nativeObj, scale, dtype);
return;
}
/**
* Calculates the product of a matrix and its transposition.
* *The function mulTransposed
calculates the product of
* src
and its transposition:
dst = scale(src - delta)^T(src - delta)
* *if aTa=true
, and
dst = scale(src - delta)(src - delta)^T
* *otherwise. The function is used to calculate the covariance matrix. With zero
* delta, it can be used as a faster substitute for general matrix product
* A*B
when B=A'
src
before
* the multiplication. When the matrix is empty (delta=noArray()
),
* it is assumed to be zero, that is, nothing is subtracted. If it has the same
* size as src
, it is simply subtracted. Otherwise, it is
* "repeated" (see "repeat") to cover the full src
and then
* subtracted. Type of the delta matrix, when it is not empty, must be the same
* as the type of created output matrix. See the dtype
parameter
* description below.
* @param scale Optional scale factor for the matrix product.
*
* @see org.opencv.core.Core.mulTransposed
* @see org.opencv.core.Core#calcCovarMatrix
* @see org.opencv.core.Core#repeat
* @see org.opencv.core.Core#reduce
* @see org.opencv.core.Core#gemm
*/
public static void mulTransposed(Mat src, Mat dst, boolean aTa, Mat delta, double scale)
{
mulTransposed_1(src.nativeObj, dst.nativeObj, aTa, delta.nativeObj, scale);
return;
}
/**
* Calculates the product of a matrix and its transposition.
* *The function mulTransposed
calculates the product of
* src
and its transposition:
dst = scale(src - delta)^T(src - delta)
* *if aTa=true
, and
dst = scale(src - delta)(src - delta)^T
* *otherwise. The function is used to calculate the covariance matrix. With zero
* delta, it can be used as a faster substitute for general matrix product
* A*B
when B=A'
Calculates the per-element scaled product of two arrays.
* *The function multiply
calculates the per-element product of two
* arrays:
dst(I)= saturate(scale * src1(I) * src2(I))
* *There is also a "MatrixExpressions" -friendly variant of the first function. * See "Mat.mul".
* *For a not-per-element matrix product, see "gemm".
* *Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src1
.
* @param scale optional scale factor.
* @param dtype a dtype
*
* @see org.opencv.core.Core.multiply
* @see org.opencv.core.Core#divide
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Core#add
* @see org.opencv.imgproc.Imgproc#accumulateSquare
* @see org.opencv.imgproc.Imgproc#accumulate
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
* @see org.opencv.imgproc.Imgproc#accumulateProduct
*/
public static void multiply(Mat src1, Mat src2, Mat dst, double scale, int dtype)
{
multiply_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale, dtype);
return;
}
/**
* Calculates the per-element scaled product of two arrays.
* *The function multiply
calculates the per-element product of two
* arrays:
dst(I)= saturate(scale * src1(I) * src2(I))
* *There is also a "MatrixExpressions" -friendly variant of the first function. * See "Mat.mul".
* *For a not-per-element matrix product, see "gemm".
* *Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src1
.
* @param scale optional scale factor.
*
* @see org.opencv.core.Core.multiply
* @see org.opencv.core.Core#divide
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Core#add
* @see org.opencv.imgproc.Imgproc#accumulateSquare
* @see org.opencv.imgproc.Imgproc#accumulate
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
* @see org.opencv.imgproc.Imgproc#accumulateProduct
*/
public static void multiply(Mat src1, Mat src2, Mat dst, double scale)
{
multiply_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale);
return;
}
/**
* Calculates the per-element scaled product of two arrays.
* *The function multiply
calculates the per-element product of two
* arrays:
dst(I)= saturate(scale * src1(I) * src2(I))
* *There is also a "MatrixExpressions" -friendly variant of the first function. * See "Mat.mul".
* *For a not-per-element matrix product, see "gemm".
* *Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src1
.
*
* @see org.opencv.core.Core.multiply
* @see org.opencv.core.Core#divide
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Core#add
* @see org.opencv.imgproc.Imgproc#accumulateSquare
* @see org.opencv.imgproc.Imgproc#accumulate
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
* @see org.opencv.imgproc.Imgproc#accumulateProduct
*/
public static void multiply(Mat src1, Mat src2, Mat dst)
{
multiply_2(src1.nativeObj, src2.nativeObj, dst.nativeObj);
return;
}
//
// C++: void multiply(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1)
//
/**
* Calculates the per-element scaled product of two arrays.
* *The function multiply
calculates the per-element product of two
* arrays:
dst(I)= saturate(scale * src1(I) * src2(I))
* *There is also a "MatrixExpressions" -friendly variant of the first function. * See "Mat.mul".
* *For a not-per-element matrix product, see "gemm".
* *Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src1
.
* @param scale optional scale factor.
* @param dtype a dtype
*
* @see org.opencv.core.Core.multiply
* @see org.opencv.core.Core#divide
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Core#add
* @see org.opencv.imgproc.Imgproc#accumulateSquare
* @see org.opencv.imgproc.Imgproc#accumulate
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
* @see org.opencv.imgproc.Imgproc#accumulateProduct
*/
public static void multiply(Mat src1, Scalar src2, Mat dst, double scale, int dtype)
{
multiply_3(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale, dtype);
return;
}
/**
* Calculates the per-element scaled product of two arrays.
* *The function multiply
calculates the per-element product of two
* arrays:
dst(I)= saturate(scale * src1(I) * src2(I))
* *There is also a "MatrixExpressions" -friendly variant of the first function. * See "Mat.mul".
* *For a not-per-element matrix product, see "gemm".
* *Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src1
.
* @param scale optional scale factor.
*
* @see org.opencv.core.Core.multiply
* @see org.opencv.core.Core#divide
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Core#add
* @see org.opencv.imgproc.Imgproc#accumulateSquare
* @see org.opencv.imgproc.Imgproc#accumulate
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
* @see org.opencv.imgproc.Imgproc#accumulateProduct
*/
public static void multiply(Mat src1, Scalar src2, Mat dst, double scale)
{
multiply_4(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale);
return;
}
/**
* Calculates the per-element scaled product of two arrays.
* *The function multiply
calculates the per-element product of two
* arrays:
dst(I)= saturate(scale * src1(I) * src2(I))
* *There is also a "MatrixExpressions" -friendly variant of the first function. * See "Mat.mul".
* *For a not-per-element matrix product, see "gemm".
* *Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
src1
.
* @param dst output array of the same size and type as src1
.
*
* @see org.opencv.core.Core.multiply
* @see org.opencv.core.Core#divide
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Core#add
* @see org.opencv.imgproc.Imgproc#accumulateSquare
* @see org.opencv.imgproc.Imgproc#accumulate
* @see org.opencv.core.Core#scaleAdd
* @see org.opencv.core.Core#subtract
* @see org.opencv.imgproc.Imgproc#accumulateProduct
*/
public static void multiply(Mat src1, Scalar src2, Mat dst)
{
multiply_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);
return;
}
//
// C++: double norm(Mat src1, int normType = NORM_L2, Mat mask = Mat())
//
/**
* Calculates an absolute array norm, an absolute difference norm, or a relative * difference norm.
* *The functions norm
calculate an absolute norm of
* src1
(when there is no src2
):
norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType = * NORM_INF)<BR>(|src1|_(L_1) = sum _I|src1(I)|)(if normType = * NORM_L1)<BR>(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType = * NORM_L2)
* *or an absolute or relative difference norm if src2
is there:
norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if * normType = NORM_INF)<BR>(|src1 - src2|_(L_1) = sum _I|src1(I) - * src2(I)|)(if normType = NORM_L1)<BR>(|src1 - src2|_(L_2) = * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)
* *or
* *norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if * normType = NORM_RELATIVE_INF)<BR>((|src1-src2|_(L_1))/(|src2|_(L_1)))(if * normType = NORM_RELATIVE_L1)<BR>((|src1-src2|_(L_2))/(|src2|_(L_2)))(if * normType = NORM_RELATIVE_L2)
* *The functions norm
return the calculated norm.
When the mask
parameter is specified and it is not empty, the
* norm is calculated only over the region specified by the mask.
A multi-channel input arrays are treated as a single-channel, that is, the * results for all channels are combined.
* * @param src1 first input array. * @param normType type of the norm (see the details below). * @param mask optional operation mask; it must have the same size as *src1
and CV_8UC1
type.
*
* @see org.opencv.core.Core.norm
*/
public static double norm(Mat src1, int normType, Mat mask)
{
double retVal = norm_0(src1.nativeObj, normType, mask.nativeObj);
return retVal;
}
/**
* Calculates an absolute array norm, an absolute difference norm, or a relative * difference norm.
* *The functions norm
calculate an absolute norm of
* src1
(when there is no src2
):
norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType = * NORM_INF)<BR>(|src1|_(L_1) = sum _I|src1(I)|)(if normType = * NORM_L1)<BR>(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType = * NORM_L2)
* *or an absolute or relative difference norm if src2
is there:
norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if * normType = NORM_INF)<BR>(|src1 - src2|_(L_1) = sum _I|src1(I) - * src2(I)|)(if normType = NORM_L1)<BR>(|src1 - src2|_(L_2) = * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)
* *or
* *norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if * normType = NORM_RELATIVE_INF)<BR>((|src1-src2|_(L_1))/(|src2|_(L_1)))(if * normType = NORM_RELATIVE_L1)<BR>((|src1-src2|_(L_2))/(|src2|_(L_2)))(if * normType = NORM_RELATIVE_L2)
* *The functions norm
return the calculated norm.
When the mask
parameter is specified and it is not empty, the
* norm is calculated only over the region specified by the mask.
A multi-channel input arrays are treated as a single-channel, that is, the * results for all channels are combined.
* * @param src1 first input array. * @param normType type of the norm (see the details below). * * @see org.opencv.core.Core.norm */ public static double norm(Mat src1, int normType) { double retVal = norm_1(src1.nativeObj, normType); return retVal; } /** *Calculates an absolute array norm, an absolute difference norm, or a relative * difference norm.
* *The functions norm
calculate an absolute norm of
* src1
(when there is no src2
):
norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType = * NORM_INF)<BR>(|src1|_(L_1) = sum _I|src1(I)|)(if normType = * NORM_L1)<BR>(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType = * NORM_L2)
* *or an absolute or relative difference norm if src2
is there:
norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if * normType = NORM_INF)<BR>(|src1 - src2|_(L_1) = sum _I|src1(I) - * src2(I)|)(if normType = NORM_L1)<BR>(|src1 - src2|_(L_2) = * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)
* *or
* *norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if * normType = NORM_RELATIVE_INF)<BR>((|src1-src2|_(L_1))/(|src2|_(L_1)))(if * normType = NORM_RELATIVE_L1)<BR>((|src1-src2|_(L_2))/(|src2|_(L_2)))(if * normType = NORM_RELATIVE_L2)
* *The functions norm
return the calculated norm.
When the mask
parameter is specified and it is not empty, the
* norm is calculated only over the region specified by the mask.
A multi-channel input arrays are treated as a single-channel, that is, the * results for all channels are combined.
* * @param src1 first input array. * * @see org.opencv.core.Core.norm */ public static double norm(Mat src1) { double retVal = norm_2(src1.nativeObj); return retVal; } // // C++: double norm(Mat src1, Mat src2, int normType = NORM_L2, Mat mask = Mat()) // /** *Calculates an absolute array norm, an absolute difference norm, or a relative * difference norm.
* *The functions norm
calculate an absolute norm of
* src1
(when there is no src2
):
norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType = * NORM_INF)<BR>(|src1|_(L_1) = sum _I|src1(I)|)(if normType = * NORM_L1)<BR>(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType = * NORM_L2)
* *or an absolute or relative difference norm if src2
is there:
norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if * normType = NORM_INF)<BR>(|src1 - src2|_(L_1) = sum _I|src1(I) - * src2(I)|)(if normType = NORM_L1)<BR>(|src1 - src2|_(L_2) = * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)
* *or
* *norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if * normType = NORM_RELATIVE_INF)<BR>((|src1-src2|_(L_1))/(|src2|_(L_1)))(if * normType = NORM_RELATIVE_L1)<BR>((|src1-src2|_(L_2))/(|src2|_(L_2)))(if * normType = NORM_RELATIVE_L2)
* *The functions norm
return the calculated norm.
When the mask
parameter is specified and it is not empty, the
* norm is calculated only over the region specified by the mask.
A multi-channel input arrays are treated as a single-channel, that is, the * results for all channels are combined.
* * @param src1 first input array. * @param src2 second input array of the same size and the same type as *src1
.
* @param normType type of the norm (see the details below).
* @param mask optional operation mask; it must have the same size as
* src1
and CV_8UC1
type.
*
* @see org.opencv.core.Core.norm
*/
public static double norm(Mat src1, Mat src2, int normType, Mat mask)
{
double retVal = norm_3(src1.nativeObj, src2.nativeObj, normType, mask.nativeObj);
return retVal;
}
/**
* Calculates an absolute array norm, an absolute difference norm, or a relative * difference norm.
* *The functions norm
calculate an absolute norm of
* src1
(when there is no src2
):
norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType = * NORM_INF)<BR>(|src1|_(L_1) = sum _I|src1(I)|)(if normType = * NORM_L1)<BR>(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType = * NORM_L2)
* *or an absolute or relative difference norm if src2
is there:
norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if * normType = NORM_INF)<BR>(|src1 - src2|_(L_1) = sum _I|src1(I) - * src2(I)|)(if normType = NORM_L1)<BR>(|src1 - src2|_(L_2) = * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)
* *or
* *norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if * normType = NORM_RELATIVE_INF)<BR>((|src1-src2|_(L_1))/(|src2|_(L_1)))(if * normType = NORM_RELATIVE_L1)<BR>((|src1-src2|_(L_2))/(|src2|_(L_2)))(if * normType = NORM_RELATIVE_L2)
* *The functions norm
return the calculated norm.
When the mask
parameter is specified and it is not empty, the
* norm is calculated only over the region specified by the mask.
A multi-channel input arrays are treated as a single-channel, that is, the * results for all channels are combined.
* * @param src1 first input array. * @param src2 second input array of the same size and the same type as *src1
.
* @param normType type of the norm (see the details below).
*
* @see org.opencv.core.Core.norm
*/
public static double norm(Mat src1, Mat src2, int normType)
{
double retVal = norm_4(src1.nativeObj, src2.nativeObj, normType);
return retVal;
}
/**
* Calculates an absolute array norm, an absolute difference norm, or a relative * difference norm.
* *The functions norm
calculate an absolute norm of
* src1
(when there is no src2
):
norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType = * NORM_INF)<BR>(|src1|_(L_1) = sum _I|src1(I)|)(if normType = * NORM_L1)<BR>(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType = * NORM_L2)
* *or an absolute or relative difference norm if src2
is there:
norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if * normType = NORM_INF)<BR>(|src1 - src2|_(L_1) = sum _I|src1(I) - * src2(I)|)(if normType = NORM_L1)<BR>(|src1 - src2|_(L_2) = * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)
* *or
* *norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if * normType = NORM_RELATIVE_INF)<BR>((|src1-src2|_(L_1))/(|src2|_(L_1)))(if * normType = NORM_RELATIVE_L1)<BR>((|src1-src2|_(L_2))/(|src2|_(L_2)))(if * normType = NORM_RELATIVE_L2)
* *The functions norm
return the calculated norm.
When the mask
parameter is specified and it is not empty, the
* norm is calculated only over the region specified by the mask.
A multi-channel input arrays are treated as a single-channel, that is, the * results for all channels are combined.
* * @param src1 first input array. * @param src2 second input array of the same size and the same type as *src1
.
*
* @see org.opencv.core.Core.norm
*/
public static double norm(Mat src1, Mat src2)
{
double retVal = norm_5(src1.nativeObj, src2.nativeObj);
return retVal;
}
//
// C++: void normalize(Mat src, Mat& dst, double alpha = 1, double beta = 0, int norm_type = NORM_L2, int dtype = -1, Mat mask = Mat())
//
/**
* Normalizes the norm or value range of an array.
* *The functions normalize
scale and shift the input array elements
* so that
| dst|_(L_p)= alpha
* *(where p=Inf, 1 or 2) when normType=NORM_INF
, NORM_L1
,
* or NORM_L2
, respectively; or so that
min _I dst(I)= alpha, max _I dst(I)= beta
* *when normType=NORM_MINMAX
(for dense arrays only).
* The optional mask specifies a sub-array to be normalized. This means that the
* norm or min-n-max are calculated over the sub-array, and then this sub-array
* is modified to be normalized. If you want to only use the mask to calculate
* the norm or min-max but modify the whole array, you can use "norm" and
* "Mat.convertTo".
In case of sparse matrices, only the non-zero values are analyzed and * transformed. Because of this, the range transformation for sparse matrices is * not allowed since it can shift the zero level.
* * @param src input array. * @param dst output array of the same size assrc
.
* @param alpha norm value to normalize to or the lower range boundary in case
* of the range normalization.
* @param beta upper range boundary in case of the range normalization; it is
* not used for the norm normalization.
* @param norm_type a norm_type
* @param dtype when negative, the output array has the same type as
* src
; otherwise, it has the same number of channels as
* src
and the depth =CV_MAT_DEPTH(dtype)
.
* @param mask optional operation mask.
*
* @see org.opencv.core.Core.normalize
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#norm
*/
public static void normalize(Mat src, Mat dst, double alpha, double beta, int norm_type, int dtype, Mat mask)
{
normalize_0(src.nativeObj, dst.nativeObj, alpha, beta, norm_type, dtype, mask.nativeObj);
return;
}
/**
* Normalizes the norm or value range of an array.
* *The functions normalize
scale and shift the input array elements
* so that
| dst|_(L_p)= alpha
* *(where p=Inf, 1 or 2) when normType=NORM_INF
, NORM_L1
,
* or NORM_L2
, respectively; or so that
min _I dst(I)= alpha, max _I dst(I)= beta
* *when normType=NORM_MINMAX
(for dense arrays only).
* The optional mask specifies a sub-array to be normalized. This means that the
* norm or min-n-max are calculated over the sub-array, and then this sub-array
* is modified to be normalized. If you want to only use the mask to calculate
* the norm or min-max but modify the whole array, you can use "norm" and
* "Mat.convertTo".
In case of sparse matrices, only the non-zero values are analyzed and * transformed. Because of this, the range transformation for sparse matrices is * not allowed since it can shift the zero level.
* * @param src input array. * @param dst output array of the same size assrc
.
* @param alpha norm value to normalize to or the lower range boundary in case
* of the range normalization.
* @param beta upper range boundary in case of the range normalization; it is
* not used for the norm normalization.
* @param norm_type a norm_type
* @param dtype when negative, the output array has the same type as
* src
; otherwise, it has the same number of channels as
* src
and the depth =CV_MAT_DEPTH(dtype)
.
*
* @see org.opencv.core.Core.normalize
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#norm
*/
public static void normalize(Mat src, Mat dst, double alpha, double beta, int norm_type, int dtype)
{
normalize_1(src.nativeObj, dst.nativeObj, alpha, beta, norm_type, dtype);
return;
}
/**
* Normalizes the norm or value range of an array.
* *The functions normalize
scale and shift the input array elements
* so that
| dst|_(L_p)= alpha
* *(where p=Inf, 1 or 2) when normType=NORM_INF
, NORM_L1
,
* or NORM_L2
, respectively; or so that
min _I dst(I)= alpha, max _I dst(I)= beta
* *when normType=NORM_MINMAX
(for dense arrays only).
* The optional mask specifies a sub-array to be normalized. This means that the
* norm or min-n-max are calculated over the sub-array, and then this sub-array
* is modified to be normalized. If you want to only use the mask to calculate
* the norm or min-max but modify the whole array, you can use "norm" and
* "Mat.convertTo".
In case of sparse matrices, only the non-zero values are analyzed and * transformed. Because of this, the range transformation for sparse matrices is * not allowed since it can shift the zero level.
* * @param src input array. * @param dst output array of the same size assrc
.
* @param alpha norm value to normalize to or the lower range boundary in case
* of the range normalization.
* @param beta upper range boundary in case of the range normalization; it is
* not used for the norm normalization.
* @param norm_type a norm_type
*
* @see org.opencv.core.Core.normalize
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#norm
*/
public static void normalize(Mat src, Mat dst, double alpha, double beta, int norm_type)
{
normalize_2(src.nativeObj, dst.nativeObj, alpha, beta, norm_type);
return;
}
/**
* Normalizes the norm or value range of an array.
* *The functions normalize
scale and shift the input array elements
* so that
| dst|_(L_p)= alpha
* *(where p=Inf, 1 or 2) when normType=NORM_INF
, NORM_L1
,
* or NORM_L2
, respectively; or so that
min _I dst(I)= alpha, max _I dst(I)= beta
* *when normType=NORM_MINMAX
(for dense arrays only).
* The optional mask specifies a sub-array to be normalized. This means that the
* norm or min-n-max are calculated over the sub-array, and then this sub-array
* is modified to be normalized. If you want to only use the mask to calculate
* the norm or min-max but modify the whole array, you can use "norm" and
* "Mat.convertTo".
In case of sparse matrices, only the non-zero values are analyzed and * transformed. Because of this, the range transformation for sparse matrices is * not allowed since it can shift the zero level.
* * @param src input array. * @param dst output array of the same size assrc
.
*
* @see org.opencv.core.Core.normalize
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#norm
*/
public static void normalize(Mat src, Mat dst)
{
normalize_3(src.nativeObj, dst.nativeObj);
return;
}
//
// C++: void patchNaNs(Mat& a, double val = 0)
//
public static void patchNaNs(Mat a, double val)
{
patchNaNs_0(a.nativeObj, val);
return;
}
public static void patchNaNs(Mat a)
{
patchNaNs_1(a.nativeObj);
return;
}
//
// C++: void perspectiveTransform(Mat src, Mat& dst, Mat m)
//
/**
* Performs the perspective matrix transformation of vectors.
* *The function perspectiveTransform
transforms every element of
* src
by treating it as a 2D or 3D vector, in the following way:
(x, y, z) -> (x'/w, y'/w, z'/w)
* *where
* *(x', y', z', w') = mat * x y z 1
* *and
* *w = w' if w' != 0; infty otherwise
* *Here a 3D vector transformation is shown. In case of a 2D vector
* transformation, the z
component is omitted.
Note: The function transforms a sparse set of 2D or 3D vectors. If you want * to transform an image using perspective transformation, use "warpPerspective". * If you have an inverse problem, that is, you want to compute the most * probable perspective transformation out of several pairs of corresponding * points, you can use "getPerspectiveTransform" or "findHomography".
* * @param src input two-channel or three-channel floating-point array; each * element is a 2D/3D vector to be transformed. * @param dst output array of the same size and type assrc
.
* @param m 3x3
or 4x4
floating-point transformation
* matrix.
*
* @see org.opencv.core.Core.perspectiveTransform
* @see org.opencv.imgproc.Imgproc#warpPerspective
* @see org.opencv.core.Core#transform
* @see org.opencv.imgproc.Imgproc#getPerspectiveTransform
*/
public static void perspectiveTransform(Mat src, Mat dst, Mat m)
{
perspectiveTransform_0(src.nativeObj, dst.nativeObj, m.nativeObj);
return;
}
//
// C++: void phase(Mat x, Mat y, Mat& angle, bool angleInDegrees = false)
//
/**
* Calculates the rotation angle of 2D vectors.
* *The function phase
calculates the rotation angle of each 2D
* vector that is formed from the corresponding elements of x
and
* y
:
angle(I) = atan2(y(I), x(I))
* *The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0
,
* the corresponding angle(I)
is set to 0.
x
.
* @param angle output array of vector angles; it has the same size and same
* type as x
.
* @param angleInDegrees when true, the function calculates the angle in
* degrees, otherwise, they are measured in radians.
*
* @see org.opencv.core.Core.phase
*/
public static void phase(Mat x, Mat y, Mat angle, boolean angleInDegrees)
{
phase_0(x.nativeObj, y.nativeObj, angle.nativeObj, angleInDegrees);
return;
}
/**
* Calculates the rotation angle of 2D vectors.
* *The function phase
calculates the rotation angle of each 2D
* vector that is formed from the corresponding elements of x
and
* y
:
angle(I) = atan2(y(I), x(I))
* *The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0
,
* the corresponding angle(I)
is set to 0.
x
.
* @param angle output array of vector angles; it has the same size and same
* type as x
.
*
* @see org.opencv.core.Core.phase
*/
public static void phase(Mat x, Mat y, Mat angle)
{
phase_1(x.nativeObj, y.nativeObj, angle.nativeObj);
return;
}
//
// C++: void polarToCart(Mat magnitude, Mat angle, Mat& x, Mat& y, bool angleInDegrees = false)
//
/**
* Calculates x and y coordinates of 2D vectors from their magnitude and angle.
* *The function polarToCart
calculates the Cartesian coordinates of
* each 2D vector represented by the corresponding elements of magnitude
* and angle
:
x(I) = magnitude(I) cos(angle(I)) * y(I) = magnitude(I) sin(angle(I)) *
* *The relative accuracy of the estimated coordinates is about 1e-6
.
=Mat()
), in this case, the function
* assumes that all the magnitudes are =1; if it is not empty, it must have the
* same size and type as angle
.
* @param angle input floating-point array of angles of 2D vectors.
* @param x output array of x-coordinates of 2D vectors; it has the same size
* and type as angle
.
* @param y output array of y-coordinates of 2D vectors; it has the same size
* and type as angle
.
* @param angleInDegrees when true, the input angles are measured in degrees,
* otherwise, they are measured in radians.
*
* @see org.opencv.core.Core.polarToCart
* @see org.opencv.core.Core#log
* @see org.opencv.core.Core#cartToPolar
* @see org.opencv.core.Core#pow
* @see org.opencv.core.Core#sqrt
* @see org.opencv.core.Core#magnitude
* @see org.opencv.core.Core#exp
* @see org.opencv.core.Core#phase
*/
public static void polarToCart(Mat magnitude, Mat angle, Mat x, Mat y, boolean angleInDegrees)
{
polarToCart_0(magnitude.nativeObj, angle.nativeObj, x.nativeObj, y.nativeObj, angleInDegrees);
return;
}
/**
* Calculates x and y coordinates of 2D vectors from their magnitude and angle.
* *The function polarToCart
calculates the Cartesian coordinates of
* each 2D vector represented by the corresponding elements of magnitude
* and angle
:
x(I) = magnitude(I) cos(angle(I)) * y(I) = magnitude(I) sin(angle(I)) *
* *The relative accuracy of the estimated coordinates is about 1e-6
.
=Mat()
), in this case, the function
* assumes that all the magnitudes are =1; if it is not empty, it must have the
* same size and type as angle
.
* @param angle input floating-point array of angles of 2D vectors.
* @param x output array of x-coordinates of 2D vectors; it has the same size
* and type as angle
.
* @param y output array of y-coordinates of 2D vectors; it has the same size
* and type as angle
.
*
* @see org.opencv.core.Core.polarToCart
* @see org.opencv.core.Core#log
* @see org.opencv.core.Core#cartToPolar
* @see org.opencv.core.Core#pow
* @see org.opencv.core.Core#sqrt
* @see org.opencv.core.Core#magnitude
* @see org.opencv.core.Core#exp
* @see org.opencv.core.Core#phase
*/
public static void polarToCart(Mat magnitude, Mat angle, Mat x, Mat y)
{
polarToCart_1(magnitude.nativeObj, angle.nativeObj, x.nativeObj, y.nativeObj);
return;
}
//
// C++: void polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
//
/**
* Draws several polygonal curves.
* *The function polylines
draws one or more polygonal curves.
Draws several polygonal curves.
* *The function polylines
draws one or more polygonal curves.
Draws several polygonal curves.
* *The function polylines
draws one or more polygonal curves.
Raises every array element to a power.
* *The function pow
raises every element of the input array to
* power
:
dst(I) = src(I)^power if power is integer; |src(I)|^power
* otherwise<BR>So, for a non-integer power exponent, the absolute values of
* input array elements are used. However, it is possible to get true values for
* negative values using some extra operations. In the example below, computing
* the 5th root of array src
shows: <BR><code>
// C++ code:
* *Mat mask = src < 0;
* *pow(src, 1./5, dst);
* *subtract(Scalar.all(0), dst, dst, mask);
* *For some values of power
, such as integer values, 0.5 and -0.5,
* specialized faster algorithms are used.
*
Special values (NaN, Inf) are not handled.
* * @param src input array. * @param power exponent of power. * @param dst output array of the same size and type assrc
.
*
* @see org.opencv.core.Core.pow
* @see org.opencv.core.Core#cartToPolar
* @see org.opencv.core.Core#polarToCart
* @see org.opencv.core.Core#exp
* @see org.opencv.core.Core#sqrt
* @see org.opencv.core.Core#log
*/
public static void pow(Mat src, double power, Mat dst)
{
pow_0(src.nativeObj, power, dst.nativeObj);
return;
}
//
// C++: void putText(Mat img, string text, Point org, int fontFace, double fontScale, Scalar color, int thickness = 1, int lineType = 8, bool bottomLeftOrigin = false)
//
/**
* Draws a text string.
* *The function putText
renders the specified text string in the
* image.
* Symbols that cannot be rendered using the specified font are replaced by
* question marks. See "getTextSize" for a text rendering code example.
FONT_HERSHEY_SIMPLEX
,
* FONT_HERSHEY_PLAIN
, FONT_HERSHEY_DUPLEX
,
* FONT_HERSHEY_COMPLEX
, FONT_HERSHEY_TRIPLEX
,
* FONT_HERSHEY_COMPLEX_SMALL
, FONT_HERSHEY_SCRIPT_SIMPLEX
,
* or FONT_HERSHEY_SCRIPT_COMPLEX
, where each of the font ID's can
* be combined with FONT_HERSHEY_ITALIC
to get the slanted letters.
* @param fontScale Font scale factor that is multiplied by the font-specific
* base size.
* @param color Text color.
* @param thickness Thickness of the lines used to draw a text.
* @param lineType Line type. See the line
for details.
* @param bottomLeftOrigin When true, the image data origin is at the
* bottom-left corner. Otherwise, it is at the top-left corner.
*
* @see org.opencv.core.Core.putText
*/
public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness, int lineType, boolean bottomLeftOrigin)
{
putText_0(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, bottomLeftOrigin);
return;
}
/**
* Draws a text string.
* *The function putText
renders the specified text string in the
* image.
* Symbols that cannot be rendered using the specified font are replaced by
* question marks. See "getTextSize" for a text rendering code example.
FONT_HERSHEY_SIMPLEX
,
* FONT_HERSHEY_PLAIN
, FONT_HERSHEY_DUPLEX
,
* FONT_HERSHEY_COMPLEX
, FONT_HERSHEY_TRIPLEX
,
* FONT_HERSHEY_COMPLEX_SMALL
, FONT_HERSHEY_SCRIPT_SIMPLEX
,
* or FONT_HERSHEY_SCRIPT_COMPLEX
, where each of the font ID's can
* be combined with FONT_HERSHEY_ITALIC
to get the slanted letters.
* @param fontScale Font scale factor that is multiplied by the font-specific
* base size.
* @param color Text color.
* @param thickness Thickness of the lines used to draw a text.
*
* @see org.opencv.core.Core.putText
*/
public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness)
{
putText_1(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
return;
}
/**
* Draws a text string.
* *The function putText
renders the specified text string in the
* image.
* Symbols that cannot be rendered using the specified font are replaced by
* question marks. See "getTextSize" for a text rendering code example.
FONT_HERSHEY_SIMPLEX
,
* FONT_HERSHEY_PLAIN
, FONT_HERSHEY_DUPLEX
,
* FONT_HERSHEY_COMPLEX
, FONT_HERSHEY_TRIPLEX
,
* FONT_HERSHEY_COMPLEX_SMALL
, FONT_HERSHEY_SCRIPT_SIMPLEX
,
* or FONT_HERSHEY_SCRIPT_COMPLEX
, where each of the font ID's can
* be combined with FONT_HERSHEY_ITALIC
to get the slanted letters.
* @param fontScale Font scale factor that is multiplied by the font-specific
* base size.
* @param color Text color.
*
* @see org.opencv.core.Core.putText
*/
public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color)
{
putText_2(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3]);
return;
}
//
// C++: void randShuffle_(Mat& dst, double iterFactor = 1.)
//
public static void randShuffle(Mat dst, double iterFactor)
{
randShuffle_0(dst.nativeObj, iterFactor);
return;
}
public static void randShuffle(Mat dst)
{
randShuffle_1(dst.nativeObj);
return;
}
//
// C++: void randn(Mat& dst, double mean, double stddev)
//
/**
* Fills the array with normally distributed random numbers.
* *The function randn
fills the matrix dst
with
* normally distributed random numbers with the specified mean vector and the
* standard deviation matrix. The generated random numbers are clipped to fit
* the value range of the output array data type.
Generates a single uniformly-distributed random number or an array of random * numbers.
* *The template functions randu
generate and return the next
* uniformly-distributed random value of the specified type. randu
* is an equivalent to (int)theRNG();
, and so on. See "RNG"
* description.
The second non-template variant of the function fills the matrix
* dst
with uniformly-distributed random numbers from the specified
* range:
low _c <= dst(I)_c < high _c
* * @param dst output array of random numbers; the array must be pre-allocated. * @param low inclusive lower boundary of the generated random numbers. * @param high exclusive upper boundary of the generated random numbers. * * @see org.opencv.core.Core.randu * @see org.opencv.core.Core#randn */ public static void randu(Mat dst, double low, double high) { randu_0(dst.nativeObj, low, high); return; } // // C++: void rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = 8, int shift = 0) // /** *Draws a simple, thick, or filled up-right rectangle.
* *The function rectangle
draws a rectangle outline or a filled
* rectangle whose two opposite corners are pt1
and
* pt2
, or r.tl()
and r.br()-Point(1,1)
.
pt1
.
* @param color Rectangle color or brightness (grayscale image).
* @param thickness Thickness of lines that make up the rectangle. Negative
* values, like CV_FILLED
, mean that the function has to draw a
* filled rectangle.
* @param lineType Type of the line. See the "line" description.
* @param shift Number of fractional bits in the point coordinates.
*
* @see org.opencv.core.Core.rectangle
*/
public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType, int shift)
{
rectangle_0(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);
return;
}
/**
* Draws a simple, thick, or filled up-right rectangle.
* *The function rectangle
draws a rectangle outline or a filled
* rectangle whose two opposite corners are pt1
and
* pt2
, or r.tl()
and r.br()-Point(1,1)
.
pt1
.
* @param color Rectangle color or brightness (grayscale image).
* @param thickness Thickness of lines that make up the rectangle. Negative
* values, like CV_FILLED
, mean that the function has to draw a
* filled rectangle.
*
* @see org.opencv.core.Core.rectangle
*/
public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness)
{
rectangle_1(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness);
return;
}
/**
* Draws a simple, thick, or filled up-right rectangle.
* *The function rectangle
draws a rectangle outline or a filled
* rectangle whose two opposite corners are pt1
and
* pt2
, or r.tl()
and r.br()-Point(1,1)
.
pt1
.
* @param color Rectangle color or brightness (grayscale image).
*
* @see org.opencv.core.Core.rectangle
*/
public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color)
{
rectangle_2(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]);
return;
}
//
// C++: void reduce(Mat src, Mat& dst, int dim, int rtype, int dtype = -1)
//
/**
* Reduces a matrix to a vector.
* *The function reduce
reduces the matrix to a vector by treating
* the matrix rows/columns as a set of 1D vectors and performing the specified
* operation on the vectors until a single row/column is obtained. For example,
* the function can be used to compute horizontal and vertical projections of a
* raster image. In case of CV_REDUCE_SUM
and CV_REDUCE_AVG
,
* the output may have a larger element bit-depth to preserve accuracy. And
* multi-channel arrays are also supported in these two reduction modes.
dim
* and dtype
parameters.
* @param dim dimension index along which the matrix is reduced. 0 means that
* the matrix is reduced to a single row. 1 means that the matrix is reduced to
* a single column.
* @param rtype reduction operation that could be one of the following:
* -
*
- CV_REDUCE_SUM: the output is the sum of all rows/columns of the * matrix. *
- CV_REDUCE_AVG: the output is the mean vector of all rows/columns of * the matrix. *
- CV_REDUCE_MAX: the output is the maximum (column/row-wise) of all * rows/columns of the matrix. *
- CV_REDUCE_MIN: the output is the minimum (column/row-wise) of all * rows/columns of the matrix. *
CV_MAKE_TYPE(CV_MAT_DEPTH(dtype),
* src.channels())
.
*
* @see org.opencv.core.Core.reduce
* @see org.opencv.core.Core#repeat
*/
public static void reduce(Mat src, Mat dst, int dim, int rtype, int dtype)
{
reduce_0(src.nativeObj, dst.nativeObj, dim, rtype, dtype);
return;
}
/**
* Reduces a matrix to a vector.
* *The function reduce
reduces the matrix to a vector by treating
* the matrix rows/columns as a set of 1D vectors and performing the specified
* operation on the vectors until a single row/column is obtained. For example,
* the function can be used to compute horizontal and vertical projections of a
* raster image. In case of CV_REDUCE_SUM
and CV_REDUCE_AVG
,
* the output may have a larger element bit-depth to preserve accuracy. And
* multi-channel arrays are also supported in these two reduction modes.
dim
* and dtype
parameters.
* @param dim dimension index along which the matrix is reduced. 0 means that
* the matrix is reduced to a single row. 1 means that the matrix is reduced to
* a single column.
* @param rtype reduction operation that could be one of the following:
* -
*
- CV_REDUCE_SUM: the output is the sum of all rows/columns of the * matrix. *
- CV_REDUCE_AVG: the output is the mean vector of all rows/columns of * the matrix. *
- CV_REDUCE_MAX: the output is the maximum (column/row-wise) of all * rows/columns of the matrix. *
- CV_REDUCE_MIN: the output is the minimum (column/row-wise) of all * rows/columns of the matrix. *
Fills the output array with repeated copies of the input array.
* *The functions "repeat" duplicate the input array one or more times along each * of the two axes:
* *dst _(ij)= src _(i mod src.rows, j mod src.cols)
* *The second variant of the function is more convenient to use with * "MatrixExpressions".
* * @param src input array to replicate. * @param ny Flag to specify how many times thesrc
is repeated
* along the vertical axis.
* @param nx Flag to specify how many times the src
is repeated
* along the horizontal axis.
* @param dst output array of the same type as src
.
*
* @see org.opencv.core.Core.repeat
* @see org.opencv.core.Core#reduce
*/
public static void repeat(Mat src, int ny, int nx, Mat dst)
{
repeat_0(src.nativeObj, ny, nx, dst.nativeObj);
return;
}
//
// C++: void scaleAdd(Mat src1, double alpha, Mat src2, Mat& dst)
//
/**
* Calculates the sum of a scaled array and another array.
* *The function scaleAdd
is one of the classical primitive linear
* algebra operations, known as DAXPY
or SAXPY
in BLAS
* (http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It
* calculates the sum of a scaled array and another array:
dst(I)= scale * src1(I) + src2(I)<BR>The function can also be * emulated with a matrix expression, for example: <BR><code>
* *// C++ code:
* *Mat A(3, 3, CV_64F);...
* *A.row(0) = A.row(1)*2 + A.row(2);
* * @param src1 first input array. * @param alpha a alpha * @param src2 second input array of the same size and type assrc1
.
* @param dst output array of the same size and type as src1
.
*
* @see org.opencv.core.Core.scaleAdd
* @see org.opencv.core.Mat#dot
* @see org.opencv.core.Mat#convertTo
* @see org.opencv.core.Core#addWeighted
* @see org.opencv.core.Core#add
* @see org.opencv.core.Core#subtract
*/
public static void scaleAdd(Mat src1, double alpha, Mat src2, Mat dst)
{
scaleAdd_0(src1.nativeObj, alpha, src2.nativeObj, dst.nativeObj);
return;
}
//
// C++: void setErrorVerbosity(bool verbose)
//
public static void setErrorVerbosity(boolean verbose)
{
setErrorVerbosity_0(verbose);
return;
}
//
// C++: void setIdentity(Mat& mtx, Scalar s = Scalar(1))
//
/**
* Initializes a scaled identity matrix.
* *The function "setIdentity" initializes a scaled identity matrix:
* *mtx(i,j)= value if i=j; 0 otherwise<BR>The function can also be * emulated using the matrix initializers and the matrix expressions: * <BR><code>
* *// C++ code:
* *Mat A = Mat.eye(4, 3, CV_32F)*5;
* *// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
* * @param mtx matrix to initialize (not necessarily square). * @param s a s * * @see org.opencv.core.Core.setIdentity * @see org.opencv.core.Mat#setTo * @see org.opencv.core.Mat#ones * @see org.opencv.core.Mat#zeros */ public static void setIdentity(Mat mtx, Scalar s) { setIdentity_0(mtx.nativeObj, s.val[0], s.val[1], s.val[2], s.val[3]); return; } /** *Initializes a scaled identity matrix.
* *The function "setIdentity" initializes a scaled identity matrix:
* *mtx(i,j)= value if i=j; 0 otherwise<BR>The function can also be * emulated using the matrix initializers and the matrix expressions: * <BR><code>
* *// C++ code:
* *Mat A = Mat.eye(4, 3, CV_32F)*5;
* *// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
* * @param mtx matrix to initialize (not necessarily square). * * @see org.opencv.core.Core.setIdentity * @see org.opencv.core.Mat#setTo * @see org.opencv.core.Mat#ones * @see org.opencv.core.Mat#zeros */ public static void setIdentity(Mat mtx) { setIdentity_1(mtx.nativeObj); return; } // // C++: bool solve(Mat src1, Mat src2, Mat& dst, int flags = DECOMP_LU) // /** *Solves one or more linear systems or least-squares problems.
* *The function solve
solves a linear system or least-squares
* problem (the latter is possible with SVD or QR methods, or by specifying the
* flag DECOMP_NORMAL
):
dst = arg min _X|src1 * X - src2|
* *If DECOMP_LU
or DECOMP_CHOLESKY
method is used, the
* function returns 1 if src1
(or src1^Tsrc1) is
* non-singular. Otherwise, it returns 0. In the latter case, dst
* is not valid. Other methods find a pseudo-solution in case of a singular
* left-hand side part.
Note: If you want to find a unity-norm solution of an under-defined singular
* system src1*dst=0, the function solve
will not do the
* work. Use "SVD.solveZ" instead.
-
*
- DECOMP_LU Gaussian elimination with optimal pivot element chosen. *
- DECOMP_CHOLESKY Cholesky LL^T factorization; the matrix
*
src1
must be symmetrical and positively defined. * - DECOMP_EIG eigenvalue decomposition; the matrix
src1
must * be symmetrical. * - DECOMP_SVD singular value decomposition (SVD) method; the system can
* be over-defined and/or the matrix
src1
can be singular. * - DECOMP_QR QR factorization; the system can be over-defined and/or the
* matrix
src1
can be singular. * - DECOMP_NORMAL while all the previous flags are mutually exclusive, * this flag can be used together with any of the previous; it means that the * normal equations src1^T*src1*dst=src1^Tsrc2 are solved instead of * the original system src1*dst=src2. *
Solves one or more linear systems or least-squares problems.
* *The function solve
solves a linear system or least-squares
* problem (the latter is possible with SVD or QR methods, or by specifying the
* flag DECOMP_NORMAL
):
dst = arg min _X|src1 * X - src2|
* *If DECOMP_LU
or DECOMP_CHOLESKY
method is used, the
* function returns 1 if src1
(or src1^Tsrc1) is
* non-singular. Otherwise, it returns 0. In the latter case, dst
* is not valid. Other methods find a pseudo-solution in case of a singular
* left-hand side part.
Note: If you want to find a unity-norm solution of an under-defined singular
* system src1*dst=0, the function solve
will not do the
* work. Use "SVD.solveZ" instead.
Finds the real roots of a cubic equation.
* *The function solveCubic
finds the real roots of a cubic
* equation:
-
*
- if
coeffs
is a 4-element vector: *
coeffs [0] x^3 + coeffs [1] x^2 + coeffs [2] x + coeffs [3] = 0
* *-
*
- if
coeffs
is a 3-element vector: *
x^3 + coeffs [0] x^2 + coeffs [1] x + coeffs [2] = 0
* *The roots are stored in the roots
array.
Finds the real or complex roots of a polynomial equation.
* *The function solvePoly
finds real and complex roots of a
* polynomial equation:
coeffs [n] x^(n) + coeffs [n-1] x^(n-1) +... + coeffs [1] x + coeffs [0] * = 0
* * @param coeffs array of polynomial coefficients. * @param roots output (complex) array of roots. * @param maxIters maximum number of iterations the algorithm does. * * @see org.opencv.core.Core.solvePoly */ public static double solvePoly(Mat coeffs, Mat roots, int maxIters) { double retVal = solvePoly_0(coeffs.nativeObj, roots.nativeObj, maxIters); return retVal; } /** *Finds the real or complex roots of a polynomial equation.
* *The function solvePoly
finds real and complex roots of a
* polynomial equation:
coeffs [n] x^(n) + coeffs [n-1] x^(n-1) +... + coeffs [1] x + coeffs [0] * = 0
* * @param coeffs array of polynomial coefficients. * @param roots output (complex) array of roots. * * @see org.opencv.core.Core.solvePoly */ public static double solvePoly(Mat coeffs, Mat roots) { double retVal = solvePoly_1(coeffs.nativeObj, roots.nativeObj); return retVal; } // // C++: void sort(Mat src, Mat& dst, int flags) // /** *Sorts each row or each column of a matrix.
* *The function sort
sorts each matrix row or each matrix column in
* ascending or descending order. So you should pass two operation flags to get
* desired behaviour. If you want to sort matrix rows or columns
* lexicographically, you can use STL std.sort
generic function
* with the proper comparison predicate.
src
.
* @param flags operation flags, a combination of the following values:
* -
*
- CV_SORT_EVERY_ROW each matrix row is sorted independently. *
- CV_SORT_EVERY_COLUMN each matrix column is sorted independently; this * flag and the previous one are mutually exclusive. *
- CV_SORT_ASCENDING each matrix row is sorted in the ascending order. *
- CV_SORT_DESCENDING each matrix row is sorted in the descending order; * this flag and the previous one are also mutually exclusive. *
Sorts each row or each column of a matrix.
* *The function sortIdx
sorts each matrix row or each matrix column
* in the ascending or descending order. So you should pass two operation flags
* to get desired behaviour. Instead of reordering the elements themselves, it
* stores the indices of sorted elements in the output array. For example:
*
// C++ code:
* *Mat A = Mat.eye(3,3,CV_32F), B;
* *sortIdx(A, B, CV_SORT_EVERY_ROW + CV_SORT_ASCENDING);
* *// B will probably contain
* *// (because of equal elements in A some permutations are possible):
* *// [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
* * @param src input single-channel array. * @param dst output integer array of the same size assrc
.
* @param flags operation flags that could be a combination of the following
* values:
* -
*
- CV_SORT_EVERY_ROW each matrix row is sorted independently. *
- CV_SORT_EVERY_COLUMN each matrix column is sorted independently; this * flag and the previous one are mutually exclusive. *
- CV_SORT_ASCENDING each matrix row is sorted in the ascending order. *
- CV_SORT_DESCENDING each matrix row is sorted in the descending order; * his flag and the previous one are also mutually exclusive. *
Divides a multi-channel array into several single-channel arrays.
* *The functions split
split a multi-channel array into separate
* single-channel arrays:
mv [c](I) = src(I)_c
* *If you need to extract a single channel or do some other sophisticated * channel permutation, use "mixChannels".
* * @param m a m * @param mv output array or vector of arrays; in the first variant of the * function the number of arrays must matchsrc.channels()
; the
* arrays themselves are reallocated, if needed.
*
* @see org.opencv.core.Core.split
* @see org.opencv.core.Core#merge
* @see org.opencv.imgproc.Imgproc#cvtColor
* @see org.opencv.core.Core#mixChannels
*/
public static void split(Mat m, ListCalculates a square root of array elements.
* *The functions sqrt
calculate a square root of each input array
* element. In case of multi-channel arrays, each channel is processed
* independently. The accuracy is approximately the same as of the built-in
* std.sqrt
.
src
.
*
* @see org.opencv.core.Core.sqrt
* @see org.opencv.core.Core#pow
* @see org.opencv.core.Core#magnitude
*/
public static void sqrt(Mat src, Mat dst)
{
sqrt_0(src.nativeObj, dst.nativeObj);
return;
}
//
// C++: void subtract(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1)
//
/**
* Calculates the per-element difference between two arrays or array and a * scalar.
* *The function subtract
calculates:
-
*
- Difference between two arrays, when both input arrays have the same * size and the same number of channels: *
dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0
* *-
*
- Difference between an array and a scalar, when
src2
is * constructed fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) - src2) if mask(I) != 0
* *-
*
- Difference between a scalar and an array, when
src1
is * constructed fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 - src2(I)) if mask(I) != 0
* *-
*
- The reverse difference between a scalar and an array in the case of
*
SubRS
: *
dst(I) = saturate(src2 - src1(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 - src2;
* *dst -= src1; // equivalent to subtract(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can subtract to 8-bit unsigned arrays and store the
* difference in a 16-bit signed array. Depth of the output array is determined
* by dtype
parameter. In the second and third cases above, as well
* as in the first case, when src1.depth() == src2.depth()
,
* dtype
can be set to the default -1
. In this case
* the output array will have the same depth as the input array, be it
* src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
Calculates the per-element difference between two arrays or array and a * scalar.
* *The function subtract
calculates:
-
*
- Difference between two arrays, when both input arrays have the same * size and the same number of channels: *
dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0
* *-
*
- Difference between an array and a scalar, when
src2
is * constructed fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) - src2) if mask(I) != 0
* *-
*
- Difference between a scalar and an array, when
src1
is * constructed fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 - src2(I)) if mask(I) != 0
* *-
*
- The reverse difference between a scalar and an array in the case of
*
SubRS
: *
dst(I) = saturate(src2 - src1(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 - src2;
* *dst -= src1; // equivalent to subtract(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can subtract to 8-bit unsigned arrays and store the
* difference in a 16-bit signed array. Depth of the output array is determined
* by dtype
parameter. In the second and third cases above, as well
* as in the first case, when src1.depth() == src2.depth()
,
* dtype
can be set to the default -1
. In this case
* the output array will have the same depth as the input array, be it
* src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
Calculates the per-element difference between two arrays or array and a * scalar.
* *The function subtract
calculates:
-
*
- Difference between two arrays, when both input arrays have the same * size and the same number of channels: *
dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0
* *-
*
- Difference between an array and a scalar, when
src2
is * constructed fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) - src2) if mask(I) != 0
* *-
*
- Difference between a scalar and an array, when
src1
is * constructed fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 - src2(I)) if mask(I) != 0
* *-
*
- The reverse difference between a scalar and an array in the case of
*
SubRS
: *
dst(I) = saturate(src2 - src1(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 - src2;
* *dst -= src1; // equivalent to subtract(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can subtract to 8-bit unsigned arrays and store the
* difference in a 16-bit signed array. Depth of the output array is determined
* by dtype
parameter. In the second and third cases above, as well
* as in the first case, when src1.depth() == src2.depth()
,
* dtype
can be set to the default -1
. In this case
* the output array will have the same depth as the input array, be it
* src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
Calculates the per-element difference between two arrays or array and a * scalar.
* *The function subtract
calculates:
-
*
- Difference between two arrays, when both input arrays have the same * size and the same number of channels: *
dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0
* *-
*
- Difference between an array and a scalar, when
src2
is * constructed fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) - src2) if mask(I) != 0
* *-
*
- Difference between a scalar and an array, when
src1
is * constructed fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 - src2(I)) if mask(I) != 0
* *-
*
- The reverse difference between a scalar and an array in the case of
*
SubRS
: *
dst(I) = saturate(src2 - src1(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 - src2;
* *dst -= src1; // equivalent to subtract(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can subtract to 8-bit unsigned arrays and store the
* difference in a 16-bit signed array. Depth of the output array is determined
* by dtype
parameter. In the second and third cases above, as well
* as in the first case, when src1.depth() == src2.depth()
,
* dtype
can be set to the default -1
. In this case
* the output array will have the same depth as the input array, be it
* src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
Calculates the per-element difference between two arrays or array and a * scalar.
* *The function subtract
calculates:
-
*
- Difference between two arrays, when both input arrays have the same * size and the same number of channels: *
dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0
* *-
*
- Difference between an array and a scalar, when
src2
is * constructed fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) - src2) if mask(I) != 0
* *-
*
- Difference between a scalar and an array, when
src1
is * constructed fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 - src2(I)) if mask(I) != 0
* *-
*
- The reverse difference between a scalar and an array in the case of
*
SubRS
: *
dst(I) = saturate(src2 - src1(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 - src2;
* *dst -= src1; // equivalent to subtract(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can subtract to 8-bit unsigned arrays and store the
* difference in a 16-bit signed array. Depth of the output array is determined
* by dtype
parameter. In the second and third cases above, as well
* as in the first case, when src1.depth() == src2.depth()
,
* dtype
can be set to the default -1
. In this case
* the output array will have the same depth as the input array, be it
* src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
Calculates the per-element difference between two arrays or array and a * scalar.
* *The function subtract
calculates:
-
*
- Difference between two arrays, when both input arrays have the same * size and the same number of channels: *
dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0
* *-
*
- Difference between an array and a scalar, when
src2
is * constructed fromScalar
or has the same number of elements as *src1.channels()
: *
dst(I) = saturate(src1(I) - src2) if mask(I) != 0
* *-
*
- Difference between a scalar and an array, when
src1
is * constructed fromScalar
or has the same number of elements as *src2.channels()
: *
dst(I) = saturate(src1 - src2(I)) if mask(I) != 0
* *-
*
- The reverse difference between a scalar and an array in the case of
*
SubRS
: *
dst(I) = saturate(src2 - src1(I)) if mask(I) != 0
* *where I
is a multi-dimensional index of array elements. In case
* of multi-channel arrays, each channel is processed independently.
* The first function in the list above can be replaced with matrix expressions:
*
// C++ code:
* *dst = src1 - src2;
* *dst -= src1; // equivalent to subtract(dst, src1, dst);
* *The input arrays and the output array can all have the same or different
* depths. For example, you can subtract to 8-bit unsigned arrays and store the
* difference in a 16-bit signed array. Depth of the output array is determined
* by dtype
parameter. In the second and third cases above, as well
* as in the first case, when src1.depth() == src2.depth()
,
* dtype
can be set to the default -1
. In this case
* the output array will have the same depth as the input array, be it
* src1
, src2
or both.
*
Note: Saturation is not applied when the output array has the depth
* CV_32S
. You may even get result of an incorrect sign in the case
* of overflow.
Calculates the sum of array elements.
* *The functions sum
calculate and return the sum of array
* elements, independently for each channel.
Returns the trace of a matrix.
* *The function trace
returns the sum of the diagonal elements of
* the matrix mtx
.
tr(mtx) = sum _i mtx(i,i)
* * @param mtx a mtx * * @see org.opencv.core.Core.trace */ public static Scalar trace(Mat mtx) { Scalar retVal = new Scalar(trace_0(mtx.nativeObj)); return retVal; } // // C++: void transform(Mat src, Mat& dst, Mat m) // /** *Performs the matrix transformation of every array element.
* *The function transform
performs the matrix transformation of
* every element of the array src
and stores the results in
* dst
:
dst(I) = m * src(I)
* *(when m.cols=src.channels()
), or
dst(I) = m * [ src(I); 1]
* *(when m.cols=src.channels()+1
)
Every element of the N
-channel array src
is
* interpreted as N
-element vector that is transformed using the
* M x N
or M x (N+1)
matrix m
to
* M
-element vector - the corresponding element of the output array
* dst
.
The function may be used for geometrical transformation of N
* -dimensional points, arbitrary linear color space transformation (such as
* various kinds of RGB to YUV transforms), shuffling the image channels, and so
* forth.
m.cols
or m.cols-1
.
* @param dst output array of the same size and depth as src
; it
* has as many channels as m.rows
.
* @param m transformation 2x2
or 2x3
floating-point
* matrix.
*
* @see org.opencv.core.Core.transform
* @see org.opencv.imgproc.Imgproc#warpAffine
* @see org.opencv.core.Core#perspectiveTransform
* @see org.opencv.imgproc.Imgproc#warpPerspective
* @see org.opencv.imgproc.Imgproc#getAffineTransform
*/
public static void transform(Mat src, Mat dst, Mat m)
{
transform_0(src.nativeObj, dst.nativeObj, m.nativeObj);
return;
}
//
// C++: void transpose(Mat src, Mat& dst)
//
/**
* Transposes a matrix.
* *The function "transpose" transposes the matrix src
:
dst(i,j) = src(j,i)
* *Note: No complex conjugation is done in case of a complex matrix. It it * should be done separately if needed.
* * @param src input array. * @param dst output array of the same type assrc
.
*
* @see org.opencv.core.Core.transpose
*/
public static void transpose(Mat src, Mat dst)
{
transpose_0(src.nativeObj, dst.nativeObj);
return;
}
//
// C++: void vconcat(vector_Mat src, Mat& dst)
//
public static void vconcat(ListFinds the global minimum and maximum in an array.
* *The functions minMaxLoc
find the minimum and maximum element
* values and their positions. The extremums are searched across the whole array
* or, if mask
is not an empty array, in the specified array
* region.
The functions do not work with multi-channel arrays. If you need to find * minimum or maximum elements across all the channels, use "Mat.reshape" first * to reinterpret the array as single-channel. Or you may extract the particular * channel using either "extractImageCOI", or "mixChannels", or "split".
* * @param src input single-channel array. * @param mask optional mask used to select a sub-array. * * @see org.opencv.core.Core.minMaxLoc * @see org.opencv.core.Core#compare * @see org.opencv.core.Core#min * @see org.opencv.core.Core#mixChannels * @see org.opencv.core.Mat#reshape * @see org.opencv.core.Core#split * @see org.opencv.core.Core#max * @see org.opencv.core.Core#inRange */ public static MinMaxLocResult minMaxLoc(Mat src, Mat mask) { MinMaxLocResult res = new MinMaxLocResult(); long maskNativeObj=0; if (mask != null) { maskNativeObj=mask.nativeObj; } double resarr[] = n_minMaxLocManual(src.nativeObj, maskNativeObj); res.minVal=resarr[0]; res.maxVal=resarr[1]; res.minLoc.x=resarr[2]; res.minLoc.y=resarr[3]; res.maxLoc.x=resarr[4]; res.maxLoc.y=resarr[5]; return res; } /** *Finds the global minimum and maximum in an array.
* *The functions minMaxLoc
find the minimum and maximum element
* values and their positions. The extremums are searched across the whole array
* or, if mask
is not an empty array, in the specified array
* region.
The functions do not work with multi-channel arrays. If you need to find * minimum or maximum elements across all the channels, use "Mat.reshape" first * to reinterpret the array as single-channel. Or you may extract the particular * channel using either "extractImageCOI", or "mixChannels", or "split".
* * @param src input single-channel array. * * @see org.opencv.core.Core.minMaxLoc * @see org.opencv.core.Core#compare * @see org.opencv.core.Core#min * @see org.opencv.core.Core#mixChannels * @see org.opencv.core.Mat#reshape * @see org.opencv.core.Core#split * @see org.opencv.core.Core#max * @see org.opencv.core.Core#inRange */ public static MinMaxLocResult minMaxLoc(Mat src) { return minMaxLoc(src, null); } // C++: Size getTextSize(const string& text, int fontFace, double fontScale, int thickness, int* baseLine); /** *Calculates the width and height of a text string.
* *The function getTextSize
calculates and returns the size of a
* box that contains the specified text.That is, the following code renders some
* text, the tight box surrounding it, and the baseline:
// C++ code:
* *string text = "Funny text inside the box";
* *int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
* *double fontScale = 2;
* *int thickness = 3;
* *Mat img(600, 800, CV_8UC3, Scalar.all(0));
* *int baseline=0;
* *Size textSize = getTextSize(text, fontFace,
* *fontScale, thickness, &baseline);
* *baseline += thickness;
* *// center the text
* *Point textOrg((img.cols - textSize.width)/2,
* *(img.rows + textSize.height)/2);
* *// draw the box
* *rectangle(img, textOrg + Point(0, baseline),
* *textOrg + Point(textSize.width, -textSize.height),
* *Scalar(0,0,255));
* *//... and the baseline first
* *line(img, textOrg + Point(0, thickness),
* *textOrg + Point(textSize.width, thickness),
* *Scalar(0, 0, 255));
* *// then put the text itself
* *putText(img, text, textOrg, fontFace, fontScale,
* *Scalar.all(255), thickness, 8);
* * @param text Input text string. * @param fontFace Font to use. See the "putText" for details. * @param fontScale Font scale. See the "putText" for details. * @param thickness Thickness of lines used to render the text. See "putText" * for details. * @param baseLine Output parameter - y-coordinate of the baseline relative to * the bottom-most text point. * * @see org.opencv.core.Core.getTextSize */ public static Size getTextSize(String text, int fontFace, double fontScale, int thickness, int[] baseLine) { if(baseLine != null && baseLine.length != 1) throw new java.lang.IllegalArgumentException("'baseLine' must be 'int[1]' or 'null'."); Size retVal = new Size(n_getTextSize(text, fontFace, fontScale, thickness, baseLine)); return retVal; } // C++: void LUT(Mat src, Mat lut, Mat& dst, int interpolation = 0) private static native void LUT_0(long src_nativeObj, long lut_nativeObj, long dst_nativeObj, int interpolation); private static native void LUT_1(long src_nativeObj, long lut_nativeObj, long dst_nativeObj); // C++: double Mahalanobis(Mat v1, Mat v2, Mat icovar) private static native double Mahalanobis_0(long v1_nativeObj, long v2_nativeObj, long icovar_nativeObj); // C++: void PCABackProject(Mat data, Mat mean, Mat eigenvectors, Mat& result) private static native void PCABackProject_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, long result_nativeObj); // C++: void PCACompute(Mat data, Mat& mean, Mat& eigenvectors, int maxComponents = 0) private static native void PCACompute_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, int maxComponents); private static native void PCACompute_1(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj); // C++: void PCAComputeVar(Mat data, Mat& mean, Mat& eigenvectors, double retainedVariance) private static native void PCAComputeVar_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, double retainedVariance); // C++: void PCAProject(Mat data, Mat mean, Mat eigenvectors, Mat& result) private static native void PCAProject_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, long result_nativeObj); // C++: void SVBackSubst(Mat w, Mat u, Mat vt, Mat rhs, Mat& dst) private static native void SVBackSubst_0(long w_nativeObj, long u_nativeObj, long vt_nativeObj, long rhs_nativeObj, long dst_nativeObj); // C++: void SVDecomp(Mat src, Mat& w, Mat& u, Mat& vt, int flags = 0) private static native void SVDecomp_0(long src_nativeObj, long w_nativeObj, long u_nativeObj, long vt_nativeObj, int flags); private static native void SVDecomp_1(long src_nativeObj, long w_nativeObj, long u_nativeObj, long vt_nativeObj); // C++: void absdiff(Mat src1, Mat src2, Mat& dst) private static native void absdiff_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void absdiff(Mat src1, Scalar src2, Mat& dst) private static native void absdiff_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); // C++: void add(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1) private static native void add_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj, int dtype); private static native void add_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); private static native void add_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void add(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1) private static native void add_3(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj, int dtype); private static native void add_4(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj); private static native void add_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); // C++: void addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat& dst, int dtype = -1) private static native void addWeighted_0(long src1_nativeObj, double alpha, long src2_nativeObj, double beta, double gamma, long dst_nativeObj, int dtype); private static native void addWeighted_1(long src1_nativeObj, double alpha, long src2_nativeObj, double beta, double gamma, long dst_nativeObj); // C++: void batchDistance(Mat src1, Mat src2, Mat& dist, int dtype, Mat& nidx, int normType = NORM_L2, int K = 0, Mat mask = Mat(), int update = 0, bool crosscheck = false) private static native void batchDistance_0(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj, int normType, int K, long mask_nativeObj, int update, boolean crosscheck); private static native void batchDistance_1(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj, int normType, int K); private static native void batchDistance_2(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj); // C++: void bitwise_and(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) private static native void bitwise_and_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); private static native void bitwise_and_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void bitwise_not(Mat src, Mat& dst, Mat mask = Mat()) private static native void bitwise_not_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj); private static native void bitwise_not_1(long src_nativeObj, long dst_nativeObj); // C++: void bitwise_or(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) private static native void bitwise_or_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); private static native void bitwise_or_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void bitwise_xor(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) private static native void bitwise_xor_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); private static native void bitwise_xor_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void calcCovarMatrix(Mat samples, Mat& covar, Mat& mean, int flags, int ctype = CV_64F) private static native void calcCovarMatrix_0(long samples_nativeObj, long covar_nativeObj, long mean_nativeObj, int flags, int ctype); private static native void calcCovarMatrix_1(long samples_nativeObj, long covar_nativeObj, long mean_nativeObj, int flags); // C++: void cartToPolar(Mat x, Mat y, Mat& magnitude, Mat& angle, bool angleInDegrees = false) private static native void cartToPolar_0(long x_nativeObj, long y_nativeObj, long magnitude_nativeObj, long angle_nativeObj, boolean angleInDegrees); private static native void cartToPolar_1(long x_nativeObj, long y_nativeObj, long magnitude_nativeObj, long angle_nativeObj); // C++: bool checkRange(Mat a, bool quiet = true, _hidden_ * pos = 0, double minVal = -DBL_MAX, double maxVal = DBL_MAX) private static native boolean checkRange_0(long a_nativeObj, boolean quiet, double minVal, double maxVal); private static native boolean checkRange_1(long a_nativeObj); // C++: void circle(Mat& img, Point center, int radius, Scalar color, int thickness = 1, int lineType = 8, int shift = 0) private static native void circle_0(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); private static native void circle_1(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); private static native void circle_2(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3); // C++: bool clipLine(Rect imgRect, Point& pt1, Point& pt2) private static native boolean clipLine_0(int imgRect_x, int imgRect_y, int imgRect_width, int imgRect_height, double pt1_x, double pt1_y, double[] pt1_out, double pt2_x, double pt2_y, double[] pt2_out); // C++: void compare(Mat src1, Mat src2, Mat& dst, int cmpop) private static native void compare_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, int cmpop); // C++: void compare(Mat src1, Scalar src2, Mat& dst, int cmpop) private static native void compare_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, int cmpop); // C++: void completeSymm(Mat& mtx, bool lowerToUpper = false) private static native void completeSymm_0(long mtx_nativeObj, boolean lowerToUpper); private static native void completeSymm_1(long mtx_nativeObj); // C++: void convertScaleAbs(Mat src, Mat& dst, double alpha = 1, double beta = 0) private static native void convertScaleAbs_0(long src_nativeObj, long dst_nativeObj, double alpha, double beta); private static native void convertScaleAbs_1(long src_nativeObj, long dst_nativeObj); // C++: int countNonZero(Mat src) private static native int countNonZero_0(long src_nativeObj); // C++: float cubeRoot(float val) private static native float cubeRoot_0(float val); // C++: void dct(Mat src, Mat& dst, int flags = 0) private static native void dct_0(long src_nativeObj, long dst_nativeObj, int flags); private static native void dct_1(long src_nativeObj, long dst_nativeObj); // C++: double determinant(Mat mtx) private static native double determinant_0(long mtx_nativeObj); // C++: void dft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0) private static native void dft_0(long src_nativeObj, long dst_nativeObj, int flags, int nonzeroRows); private static native void dft_1(long src_nativeObj, long dst_nativeObj); // C++: void divide(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1) private static native void divide_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale, int dtype); private static native void divide_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale); private static native void divide_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void divide(double scale, Mat src2, Mat& dst, int dtype = -1) private static native void divide_3(double scale, long src2_nativeObj, long dst_nativeObj, int dtype); private static native void divide_4(double scale, long src2_nativeObj, long dst_nativeObj); // C++: void divide(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1) private static native void divide_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale, int dtype); private static native void divide_6(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale); private static native void divide_7(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); // C++: bool eigen(Mat src, bool computeEigenvectors, Mat& eigenvalues, Mat& eigenvectors) private static native boolean eigen_0(long src_nativeObj, boolean computeEigenvectors, long eigenvalues_nativeObj, long eigenvectors_nativeObj); // C++: void ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, int lineType = 8, int shift = 0) private static native void ellipse_0(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); private static native void ellipse_1(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); private static native void ellipse_2(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void ellipse(Mat& img, RotatedRect box, Scalar color, int thickness = 1, int lineType = 8) private static native void ellipse_3(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); private static native void ellipse_4(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); private static native void ellipse_5(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts) private static native void ellipse2Poly_0(double center_x, double center_y, double axes_width, double axes_height, int angle, int arcStart, int arcEnd, int delta, long pts_mat_nativeObj); // C++: void exp(Mat src, Mat& dst) private static native void exp_0(long src_nativeObj, long dst_nativeObj); // C++: void extractChannel(Mat src, Mat& dst, int coi) private static native void extractChannel_0(long src_nativeObj, long dst_nativeObj, int coi); // C++: float fastAtan2(float y, float x) private static native float fastAtan2_0(float y, float x); // C++: void fillConvexPoly(Mat& img, vector_Point points, Scalar color, int lineType = 8, int shift = 0) private static native void fillConvexPoly_0(long img_nativeObj, long points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift); private static native void fillConvexPoly_1(long img_nativeObj, long points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void fillPoly(Mat& img, vector_vector_Point pts, Scalar color, int lineType = 8, int shift = 0, Point offset = Point()) private static native void fillPoly_0(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift, double offset_x, double offset_y); private static native void fillPoly_1(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void findNonZero(Mat src, Mat& idx) private static native void findNonZero_0(long src_nativeObj, long idx_nativeObj); // C++: void flip(Mat src, Mat& dst, int flipCode) private static native void flip_0(long src_nativeObj, long dst_nativeObj, int flipCode); // C++: void gemm(Mat src1, Mat src2, double alpha, Mat src3, double gamma, Mat& dst, int flags = 0) private static native void gemm_0(long src1_nativeObj, long src2_nativeObj, double alpha, long src3_nativeObj, double gamma, long dst_nativeObj, int flags); private static native void gemm_1(long src1_nativeObj, long src2_nativeObj, double alpha, long src3_nativeObj, double gamma, long dst_nativeObj); // C++: string getBuildInformation() private static native String getBuildInformation_0(); // C++: int64 getCPUTickCount() private static native long getCPUTickCount_0(); // C++: int getNumberOfCPUs() private static native int getNumberOfCPUs_0(); // C++: int getOptimalDFTSize(int vecsize) private static native int getOptimalDFTSize_0(int vecsize); // C++: int64 getTickCount() private static native long getTickCount_0(); // C++: double getTickFrequency() private static native double getTickFrequency_0(); // C++: void hconcat(vector_Mat src, Mat& dst) private static native void hconcat_0(long src_mat_nativeObj, long dst_nativeObj); // C++: void idct(Mat src, Mat& dst, int flags = 0) private static native void idct_0(long src_nativeObj, long dst_nativeObj, int flags); private static native void idct_1(long src_nativeObj, long dst_nativeObj); // C++: void idft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0) private static native void idft_0(long src_nativeObj, long dst_nativeObj, int flags, int nonzeroRows); private static native void idft_1(long src_nativeObj, long dst_nativeObj); // C++: void inRange(Mat src, Scalar lowerb, Scalar upperb, Mat& dst) private static native void inRange_0(long src_nativeObj, double lowerb_val0, double lowerb_val1, double lowerb_val2, double lowerb_val3, double upperb_val0, double upperb_val1, double upperb_val2, double upperb_val3, long dst_nativeObj); // C++: void insertChannel(Mat src, Mat& dst, int coi) private static native void insertChannel_0(long src_nativeObj, long dst_nativeObj, int coi); // C++: double invert(Mat src, Mat& dst, int flags = DECOMP_LU) private static native double invert_0(long src_nativeObj, long dst_nativeObj, int flags); private static native double invert_1(long src_nativeObj, long dst_nativeObj); // C++: double kmeans(Mat data, int K, Mat& bestLabels, TermCriteria criteria, int attempts, int flags, Mat& centers = Mat()) private static native double kmeans_0(long data_nativeObj, int K, long bestLabels_nativeObj, int criteria_type, int criteria_maxCount, double criteria_epsilon, int attempts, int flags, long centers_nativeObj); private static native double kmeans_1(long data_nativeObj, int K, long bestLabels_nativeObj, int criteria_type, int criteria_maxCount, double criteria_epsilon, int attempts, int flags); // C++: void line(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = 8, int shift = 0) private static native void line_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); private static native void line_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); private static native void line_2(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void log(Mat src, Mat& dst) private static native void log_0(long src_nativeObj, long dst_nativeObj); // C++: void magnitude(Mat x, Mat y, Mat& magnitude) private static native void magnitude_0(long x_nativeObj, long y_nativeObj, long magnitude_nativeObj); // C++: void max(Mat src1, Mat src2, Mat& dst) private static native void max_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void max(Mat src1, Scalar src2, Mat& dst) private static native void max_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); // C++: Scalar mean(Mat src, Mat mask = Mat()) private static native double[] mean_0(long src_nativeObj, long mask_nativeObj); private static native double[] mean_1(long src_nativeObj); // C++: void meanStdDev(Mat src, vector_double& mean, vector_double& stddev, Mat mask = Mat()) private static native void meanStdDev_0(long src_nativeObj, long mean_mat_nativeObj, long stddev_mat_nativeObj, long mask_nativeObj); private static native void meanStdDev_1(long src_nativeObj, long mean_mat_nativeObj, long stddev_mat_nativeObj); // C++: void merge(vector_Mat mv, Mat& dst) private static native void merge_0(long mv_mat_nativeObj, long dst_nativeObj); // C++: void min(Mat src1, Mat src2, Mat& dst) private static native void min_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void min(Mat src1, Scalar src2, Mat& dst) private static native void min_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); // C++: void mixChannels(vector_Mat src, vector_Mat dst, vector_int fromTo) private static native void mixChannels_0(long src_mat_nativeObj, long dst_mat_nativeObj, long fromTo_mat_nativeObj); // C++: void mulSpectrums(Mat a, Mat b, Mat& c, int flags, bool conjB = false) private static native void mulSpectrums_0(long a_nativeObj, long b_nativeObj, long c_nativeObj, int flags, boolean conjB); private static native void mulSpectrums_1(long a_nativeObj, long b_nativeObj, long c_nativeObj, int flags); // C++: void mulTransposed(Mat src, Mat& dst, bool aTa, Mat delta = Mat(), double scale = 1, int dtype = -1) private static native void mulTransposed_0(long src_nativeObj, long dst_nativeObj, boolean aTa, long delta_nativeObj, double scale, int dtype); private static native void mulTransposed_1(long src_nativeObj, long dst_nativeObj, boolean aTa, long delta_nativeObj, double scale); private static native void mulTransposed_2(long src_nativeObj, long dst_nativeObj, boolean aTa); // C++: void multiply(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1) private static native void multiply_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale, int dtype); private static native void multiply_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale); private static native void multiply_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void multiply(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1) private static native void multiply_3(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale, int dtype); private static native void multiply_4(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale); private static native void multiply_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); // C++: double norm(Mat src1, int normType = NORM_L2, Mat mask = Mat()) private static native double norm_0(long src1_nativeObj, int normType, long mask_nativeObj); private static native double norm_1(long src1_nativeObj, int normType); private static native double norm_2(long src1_nativeObj); // C++: double norm(Mat src1, Mat src2, int normType = NORM_L2, Mat mask = Mat()) private static native double norm_3(long src1_nativeObj, long src2_nativeObj, int normType, long mask_nativeObj); private static native double norm_4(long src1_nativeObj, long src2_nativeObj, int normType); private static native double norm_5(long src1_nativeObj, long src2_nativeObj); // C++: void normalize(Mat src, Mat& dst, double alpha = 1, double beta = 0, int norm_type = NORM_L2, int dtype = -1, Mat mask = Mat()) private static native void normalize_0(long src_nativeObj, long dst_nativeObj, double alpha, double beta, int norm_type, int dtype, long mask_nativeObj); private static native void normalize_1(long src_nativeObj, long dst_nativeObj, double alpha, double beta, int norm_type, int dtype); private static native void normalize_2(long src_nativeObj, long dst_nativeObj, double alpha, double beta, int norm_type); private static native void normalize_3(long src_nativeObj, long dst_nativeObj); // C++: void patchNaNs(Mat& a, double val = 0) private static native void patchNaNs_0(long a_nativeObj, double val); private static native void patchNaNs_1(long a_nativeObj); // C++: void perspectiveTransform(Mat src, Mat& dst, Mat m) private static native void perspectiveTransform_0(long src_nativeObj, long dst_nativeObj, long m_nativeObj); // C++: void phase(Mat x, Mat y, Mat& angle, bool angleInDegrees = false) private static native void phase_0(long x_nativeObj, long y_nativeObj, long angle_nativeObj, boolean angleInDegrees); private static native void phase_1(long x_nativeObj, long y_nativeObj, long angle_nativeObj); // C++: void polarToCart(Mat magnitude, Mat angle, Mat& x, Mat& y, bool angleInDegrees = false) private static native void polarToCart_0(long magnitude_nativeObj, long angle_nativeObj, long x_nativeObj, long y_nativeObj, boolean angleInDegrees); private static native void polarToCart_1(long magnitude_nativeObj, long angle_nativeObj, long x_nativeObj, long y_nativeObj); // C++: void polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, int lineType = 8, int shift = 0) private static native void polylines_0(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); private static native void polylines_1(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); private static native void polylines_2(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void pow(Mat src, double power, Mat& dst) private static native void pow_0(long src_nativeObj, double power, long dst_nativeObj); // C++: void putText(Mat img, string text, Point org, int fontFace, double fontScale, Scalar color, int thickness = 1, int lineType = 8, bool bottomLeftOrigin = false) private static native void putText_0(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, boolean bottomLeftOrigin); private static native void putText_1(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); private static native void putText_2(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void randShuffle_(Mat& dst, double iterFactor = 1.) private static native void randShuffle_0(long dst_nativeObj, double iterFactor); private static native void randShuffle_1(long dst_nativeObj); // C++: void randn(Mat& dst, double mean, double stddev) private static native void randn_0(long dst_nativeObj, double mean, double stddev); // C++: void randu(Mat& dst, double low, double high) private static native void randu_0(long dst_nativeObj, double low, double high); // C++: void rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = 8, int shift = 0) private static native void rectangle_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); private static native void rectangle_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); private static native void rectangle_2(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void reduce(Mat src, Mat& dst, int dim, int rtype, int dtype = -1) private static native void reduce_0(long src_nativeObj, long dst_nativeObj, int dim, int rtype, int dtype); private static native void reduce_1(long src_nativeObj, long dst_nativeObj, int dim, int rtype); // C++: void repeat(Mat src, int ny, int nx, Mat& dst) private static native void repeat_0(long src_nativeObj, int ny, int nx, long dst_nativeObj); // C++: void scaleAdd(Mat src1, double alpha, Mat src2, Mat& dst) private static native void scaleAdd_0(long src1_nativeObj, double alpha, long src2_nativeObj, long dst_nativeObj); // C++: void setErrorVerbosity(bool verbose) private static native void setErrorVerbosity_0(boolean verbose); // C++: void setIdentity(Mat& mtx, Scalar s = Scalar(1)) private static native void setIdentity_0(long mtx_nativeObj, double s_val0, double s_val1, double s_val2, double s_val3); private static native void setIdentity_1(long mtx_nativeObj); // C++: bool solve(Mat src1, Mat src2, Mat& dst, int flags = DECOMP_LU) private static native boolean solve_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, int flags); private static native boolean solve_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: int solveCubic(Mat coeffs, Mat& roots) private static native int solveCubic_0(long coeffs_nativeObj, long roots_nativeObj); // C++: double solvePoly(Mat coeffs, Mat& roots, int maxIters = 300) private static native double solvePoly_0(long coeffs_nativeObj, long roots_nativeObj, int maxIters); private static native double solvePoly_1(long coeffs_nativeObj, long roots_nativeObj); // C++: void sort(Mat src, Mat& dst, int flags) private static native void sort_0(long src_nativeObj, long dst_nativeObj, int flags); // C++: void sortIdx(Mat src, Mat& dst, int flags) private static native void sortIdx_0(long src_nativeObj, long dst_nativeObj, int flags); // C++: void split(Mat m, vector_Mat& mv) private static native void split_0(long m_nativeObj, long mv_mat_nativeObj); // C++: void sqrt(Mat src, Mat& dst) private static native void sqrt_0(long src_nativeObj, long dst_nativeObj); // C++: void subtract(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1) private static native void subtract_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj, int dtype); private static native void subtract_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); private static native void subtract_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void subtract(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1) private static native void subtract_3(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj, int dtype); private static native void subtract_4(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj); private static native void subtract_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); // C++: Scalar sum(Mat src) private static native double[] sumElems_0(long src_nativeObj); // C++: Scalar trace(Mat mtx) private static native double[] trace_0(long mtx_nativeObj); // C++: void transform(Mat src, Mat& dst, Mat m) private static native void transform_0(long src_nativeObj, long dst_nativeObj, long m_nativeObj); // C++: void transpose(Mat src, Mat& dst) private static native void transpose_0(long src_nativeObj, long dst_nativeObj); // C++: void vconcat(vector_Mat src, Mat& dst) private static native void vconcat_0(long src_mat_nativeObj, long dst_nativeObj); private static native double[] n_minMaxLocManual(long src_nativeObj, long mask_nativeObj); private static native double[] n_getTextSize(String text, int fontFace, double fontScale, int thickness, int[] baseLine); }