Lib.xlwt.Bitmap.py Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sikulixapi Show documentation
Show all versions of sikulixapi Show documentation
... for visual testing and automation
# -*- coding: windows-1251 -*-
# Portions are Copyright (C) 2005 Roman V. Kiseliov
# Portions are Copyright (c) 2004 Evgeny Filatov
# Portions are Copyright (c) 2002-2004 John McNamara (Perl Spreadsheet::WriteExcel)
from BIFFRecords import BiffRecord
from struct import pack, unpack
def _size_col(sheet, col):
return sheet.col_width(col)
def _size_row(sheet, row):
return sheet.row_height(row)
def _position_image(sheet, row_start, col_start, x1, y1, width, height):
"""Calculate the vertices that define the position of the image as required by
the OBJ record.
+------------+------------+
| A | B |
+-----+------------+------------+
| |(x1,y1) | |
| 1 |(A1)._______|______ |
| | | | |
| | | | |
+-----+----| BITMAP |-----+
| | | | |
| 2 | |______________. |
| | | (B2)|
| | | (x2,y2)|
+---- +------------+------------+
Example of a bitmap that covers some of the area from cell A1 to cell B2.
Based on the width and height of the bitmap we need to calculate 8 vars:
col_start, row_start, col_end, row_end, x1, y1, x2, y2.
The width and height of the cells are also variable and have to be taken into
account.
The values of col_start and row_start are passed in from the calling
function. The values of col_end and row_end are calculated by subtracting
the width and height of the bitmap from the width and height of the
underlying cells.
The vertices are expressed as a percentage of the underlying cell width as
follows (rhs values are in pixels):
x1 = X / W *1024
y1 = Y / H *256
x2 = (X-1) / W *1024
y2 = (Y-1) / H *256
Where: X is distance from the left side of the underlying cell
Y is distance from the top of the underlying cell
W is the width of the cell
H is the height of the cell
Note: the SDK incorrectly states that the height should be expressed as a
percentage of 1024.
col_start - Col containing upper left corner of object
row_start - Row containing top left corner of object
x1 - Distance to left side of object
y1 - Distance to top of object
width - Width of image frame
height - Height of image frame
"""
# Adjust start column for offsets that are greater than the col width
while x1 >= _size_col(sheet, col_start):
x1 -= _size_col(sheet, col_start)
col_start += 1
# Adjust start row for offsets that are greater than the row height
while y1 >= _size_row(sheet, row_start):
y1 -= _size_row(sheet, row_start)
row_start += 1
# Initialise end cell to the same as the start cell
row_end = row_start # Row containing bottom right corner of object
col_end = col_start # Col containing lower right corner of object
width = width + x1 - 1
height = height + y1 - 1
# Subtract the underlying cell widths to find the end cell of the image
while (width >= _size_col(sheet, col_end)):
width -= _size_col(sheet, col_end)
col_end += 1
# Subtract the underlying cell heights to find the end cell of the image
while (height >= _size_row(sheet, row_end)):
height -= _size_row(sheet, row_end)
row_end += 1
# Bitmap isn't allowed to start or finish in a hidden cell, i.e. a cell
# with zero height or width.
if ((_size_col(sheet, col_start) == 0) or (_size_col(sheet, col_end) == 0)
or (_size_row(sheet, row_start) == 0) or (_size_row(sheet, row_end) == 0)):
return
# Convert the pixel values to the percentage value expected by Excel
x1 = int(float(x1) / _size_col(sheet, col_start) * 1024)
y1 = int(float(y1) / _size_row(sheet, row_start) * 256)
# Distance to right side of object
x2 = int(float(width) / _size_col(sheet, col_end) * 1024)
# Distance to bottom of object
y2 = int(float(height) / _size_row(sheet, row_end) * 256)
return (col_start, x1, row_start, y1, col_end, x2, row_end, y2)
class ObjBmpRecord(BiffRecord):
_REC_ID = 0x005D # Record identifier
def __init__(self, row, col, sheet, im_data_bmp, x, y, scale_x, scale_y):
# Scale the frame of the image.
width = im_data_bmp.width * scale_x
height = im_data_bmp.height * scale_y
# Calculate the vertices of the image and write the OBJ record
coordinates = _position_image(sheet, row, col, x, y, width, height)
# print coordinates
col_start, x1, row_start, y1, col_end, x2, row_end, y2 = coordinates
"""Store the OBJ record that precedes an IMDATA record. This could be generalise
to support other Excel objects.
"""
cObj = 0x0001 # Count of objects in file (set to 1)
OT = 0x0008 # Object type. 8 = Picture
id = 0x0001 # Object ID
grbit = 0x0614 # Option flags
colL = col_start # Col containing upper left corner of object
dxL = x1 # Distance from left side of cell
rwT = row_start # Row containing top left corner of object
dyT = y1 # Distance from top of cell
colR = col_end # Col containing lower right corner of object
dxR = x2 # Distance from right of cell
rwB = row_end # Row containing bottom right corner of object
dyB = y2 # Distance from bottom of cell
cbMacro = 0x0000 # Length of FMLA structure
Reserved1 = 0x0000 # Reserved
Reserved2 = 0x0000 # Reserved
icvBack = 0x09 # Background colour
icvFore = 0x09 # Foreground colour
fls = 0x00 # Fill pattern
fAuto = 0x00 # Automatic fill
icv = 0x08 # Line colour
lns = 0xff # Line style
lnw = 0x01 # Line weight
fAutoB = 0x00 # Automatic border
frs = 0x0000 # Frame style
cf = 0x0009 # Image format, 9 = bitmap
Reserved3 = 0x0000 # Reserved
cbPictFmla = 0x0000 # Length of FMLA structure
Reserved4 = 0x0000 # Reserved
grbit2 = 0x0001 # Option flags
Reserved5 = 0x0000 # Reserved
data = pack(" 0xFFFF):
raise Exception("bitmap: largest image width supported is 65k.")
if (height > 0xFFFF):
raise Exception("bitmap: largest image height supported is 65k.")
# Read and remove the bitmap planes and bpp data. Verify them.
planes, bitcount = unpack("
© 2015 - 2025 Weber Informatics LLC | Privacy Policy