All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.core.Mat Maven / Gradle / Ivy

package org.opencv.core;

// C++: class Mat
/**
 * 

OpenCV C++ n-dimensional dense array class

* *

class CV_EXPORTS Mat

* *

// C++ code:

* * *

public:

* *

//... a lot of methods......

* *

/ *! includes several bit-fields:

* *

- the magic signature

* *

- continuity flag

* *

- depth

* *

- number of channels

*
    *
  • / *
* *

int flags;

* *

//! the array dimensionality, >= 2

* *

int dims;

* *

//! the number of rows and columns or (-1, -1) when the array has more than 2 * dimensions

* *

int rows, cols;

* *

//! pointer to the data

* *

uchar* data;

* *

//! pointer to the reference counter;

* *

// when array points to user-allocated data, the pointer is NULL

* *

int* refcount;

* *

// other members...

* *

};

* *

The class Mat represents an n-dimensional dense numerical * single-channel or multi-channel array. It can be used to store real or * complex-valued vectors and matrices, grayscale or color images, voxel * volumes, vector fields, point clouds, tensors, histograms (though, very * high-dimensional histograms may be better stored in a SparseMat). * The data layout of the array

* *

M is defined by the array M.step[], so that the address * of element (i_0,...,i_(M.dims-1)), where 0 <= i_k<M.size[k], * is computed as:

* *

addr(M_(i_0,...,i_(M.dims-1))) = M.data + M.step[0]*i_0 + M.step[1]*i_1 * +... + M.step[M.dims-1]*i_(M.dims-1)

* *

In case of a 2-dimensional array, the above formula is reduced to:

* *

addr(M_(i,j)) = M.data + M.step[0]*i + M.step[1]*j

* *

Note that M.step[i] >= M.step[i+1] (in fact, M.step[i] >= * M.step[i+1]*M.size[i+1]). This means that 2-dimensional matrices are * stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so * on. M.step[M.dims-1] is minimal and always equal to the element * size M.elemSize().

* *

So, the data layout in Mat is fully compatible with * CvMat, IplImage, and CvMatND types * from OpenCV 1.x. It is also compatible with the majority of dense array types * from the standard toolkits and SDKs, such as Numpy (ndarray), Win32 * (independent device bitmaps), and others, that is, with any array that uses * *steps* (or *strides*) to compute the position of a pixel. Due to this * compatibility, it is possible to make a Mat header for * user-allocated data and process it in-place using OpenCV functions.

* *

There are many different ways to create a Mat object. The most * popular options are listed below:

*
    *
  • Use the create(nrows, ncols, type) method or the similar * Mat(nrows, ncols, type[, fillValue]) constructor. A new array of * the specified size and type is allocated. type has the same * meaning as in the cvCreateMat method. *
*

For example, CV_8UC1 means a 8-bit single-channel array, * CV_32FC2 means a 2-channel (complex) floating-point array, and * so on.

* *

* *

// C++ code:

* *

// make a 7x7 complex matrix filled with 1+3j.

* *

Mat M(7,7,CV_32FC2,Scalar(1,3));

* *

// and now turn M to a 100x60 15-channel 8-bit matrix.

* *

// The old content will be deallocated

* *

M.create(100,60,CV_8UC(15));

* *

* *

As noted in the introduction to this chapter, create() allocates * only a new array when the shape or type of the current array are different * from the specified ones.

*
    *
  • Create a multi-dimensional array: *
* *

* *

// C++ code:

* *

// create a 100x100x100 8-bit array

* *

int sz[] = {100, 100, 100};

* *

Mat bigCube(3, sz, CV_8U, Scalar.all(0));

* *

* *

It passes the number of dimensions =1 to the Mat constructor but * the created array will be 2-dimensional with the number of columns set to 1. * So, Mat.dims is always >= 2 (can also be 0 when the array is * empty).

*
    *
  • Use a copy constructor or assignment operator where there can be an * array or expression on the right side (see below). As noted in the * introduction, the array assignment is an O(1) operation because it only * copies the header and increases the reference counter. The Mat.clone() * method can be used to get a full (deep) copy of the array when you need it. *
  • Construct a header for a part of another array. It can be a single * row, single column, several rows, several columns, rectangular region in the * array (called a *minor* in algebra) or a diagonal. Such operations are also * O(1) because the new header references the same data. You can actually modify * a part of the array using this feature, for example: *
* *

* *

// C++ code:

* *

// add the 5-th row, multiplied by 3 to the 3rd row

* *

M.row(3) = M.row(3) + M.row(5)*3;

* *

// now copy the 7-th column to the 1-st column

* *

// M.col(1) = M.col(7); // this will not work

* *

Mat M1 = M.col(1);

* *

M.col(7).copyTo(M1);

* *

// create a new 320x240 image

* *

Mat img(Size(320,240),CV_8UC3);

* *

// select a ROI

* *

Mat roi(img, Rect(10,10,100,100));

* *

// fill the ROI with (0,255,0) (which is green in RGB space);

* *

// the original 320x240 image will be modified

* *

roi = Scalar(0,255,0);

* *

* *

Due to the additional datastart and dataend * members, it is possible to compute a relative sub-array position in the main * *container* array using locateROI():

* *

* *

// C++ code:

* *

Mat A = Mat.eye(10, 10, CV_32S);

* *

// extracts A columns, 1 (inclusive) to 3 (exclusive).

* *

Mat B = A(Range.all(), Range(1, 3));

* *

// extracts B rows, 5 (inclusive) to 9 (exclusive).

* *

// that is, C ~ A(Range(5, 9), Range(1, 3))

* *

Mat C = B(Range(5, 9), Range.all());

* *

Size size; Point ofs;

* *

C.locateROI(size, ofs);

* *

// size will be (width=10,height=10) and the ofs will be (x=1, y=5)

* *

* *

As in case of whole matrices, if you need a deep copy, use the * clone() method of the extracted sub-matrices.

*
    *
  • Make a header for user-allocated data. It can be useful to do the * following: *
  • Process "foreign" data using OpenCV (for example, when you implement a * DirectShow* filter or a processing module for gstreamer, and so * on). For example: *
* *

* *

// C++ code:

* *

void process_video_frame(const unsigned char* pixels,

* *

int width, int height, int step)

* * *

Mat img(height, width, CV_8UC3, pixels, step);

* *

GaussianBlur(img, img, Size(7,7), 1.5, 1.5);

* * *

*
    *
  • Quickly initialize small matrices and/or get a super-fast element * access. *
* *

* *

// C++ code:

* *

double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};

* *

Mat M = Mat(3, 3, CV_64F, m).inv();

* *

* *

Partial yet very common cases of this *user-allocated data* case are * conversions from CvMat and IplImage to * Mat. For this purpose, there are special constructors taking * pointers to CvMat or IplImage and the optional flag * indicating whether to copy the data or not.

* *

Backward conversion from Mat to CvMat or * IplImage is provided via cast operators Mat.operator * CvMat() const and Mat.operator IplImage(). The operators * do NOT copy the data.

* *

* *

// C++ code:

* *

IplImage* img = cvLoadImage("greatwave.jpg", 1);

* *

Mat mtx(img); // convert IplImage* -> Mat

* *

CvMat oldmat = mtx; // convert Mat -> CvMat

* *

CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&

* *

oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep);

* *

*
    *
  • Use MATLAB-style array initializers, zeros(), ones(), * eye(), for example: *
* *

* *

// C++ code:

* *

// create a double-precision identity martix and add it to M.

* *

M += Mat.eye(M.rows, M.cols, CV_64F);

* *

*
    *
  • Use a comma-separated initializer: *
* *

* *

// C++ code:

* *

// create a 3x3 double-precision identity matrix

* *

Mat M = (Mat_(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);

* *

* *

With this approach, you first call a constructor of the "Mat_" class with the * proper parameters, and then you just put << operator followed by * comma-separated values that can be constants, variables, expressions, and so * on. Also, note the extra parentheses required to avoid compilation errors.

* *

Once the array is created, it is automatically managed via a * reference-counting mechanism. If the array header is built on top of * user-allocated data, you should handle the data by yourself. * The array data is deallocated when no one points to it. If you want to * release the data pointed by a array header before the array destructor is * called, use Mat.release().

* *

The next important thing to learn about the array class is element access. * This manual already described how to compute an address of each array * element. Normally, you are not required to use the formula directly in the * code. If you know the array element type (which can be retrieved using the * method Mat.type()), you can access the elementM_(ij) * of a 2-dimensional array as:

* *

// C++ code:

* *

M.at(i,j) += 1.f;

* *

assuming that M is a double-precision floating-point array. There are several * variants of the method at for a different number of dimensions. *

* *

If you need to process a whole row of a 2D array, the most efficient way is * to get the pointer to the row first, and then just use the plain C operator * [] :

* *

// C++ code:

* *

// compute sum of positive matrix elements

* *

// (assuming that M isa double-precision matrix)

* *

double sum=0;

* *

for(int i = 0; i < M.rows; i++)

* * *

const double* Mi = M.ptr(i);

* *

for(int j = 0; j < M.cols; j++)

* *

sum += std.max(Mi[j], 0.);

* * *

Some operations, like the one above, do not actually depend on the array * shape. They just process elements of an array one by one (or elements from * multiple arrays that have the same coordinates, for example, array addition). * Such operations are called *element-wise*. It makes sense to check whether * all the input/output arrays are continuous, namely, have no gaps at the end * of each row. If yes, process them as a long single row:

* *

// compute the sum of positive matrix elements, optimized variant

* *

double sum=0;

* *

int cols = M.cols, rows = M.rows;

* *

if(M.isContinuous())

* * *

cols *= rows;

* *

rows = 1;

* * *

for(int i = 0; i < rows; i++)

* * *

const double* Mi = M.ptr(i);

* *

for(int j = 0; j < cols; j++)

* *

sum += std.max(Mi[j], 0.);

* * *

In case of the continuous matrix, the outer loop body is executed just once. * So, the overhead is smaller, which is especially noticeable in case of small * matrices. *

* *

Finally, there are STL-style iterators that are smart enough to skip gaps * between successive rows:

* *

// C++ code:

* *

// compute sum of positive matrix elements, iterator-based variant

* *

double sum=0;

* *

MatConstIterator_ it = M.begin(), it_end = M.end();

* *

for(; it != it_end; ++it)

* *

sum += std.max(*it, 0.);

* *

The matrix iterators are random-access iterators, so they can be passed to * any STL algorithm, including std.sort(). *

* *

Note:

*
    *
  • An example demonstrating the serial out capabilities of cv.Mat can be * found at opencv_source_code/samples/cpp/cout_mat.cpp *
* * @see org.opencv.core.Mat */ public class Mat { public final long nativeObj; public Mat(long addr) { if (addr == 0) throw new java.lang.UnsupportedOperationException("Native object address is NULL"); nativeObj = addr; } // // C++: Mat::Mat() // /** *

Various Mat constructors

* *

These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.

* * @see org.opencv.core.Mat.Mat */ public Mat() { nativeObj = n_Mat(); return; } // // C++: Mat::Mat(int rows, int cols, int type) // /** *

Various Mat constructors

* *

These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.

* * @param rows Number of rows in a 2D array. * @param cols Number of columns in a 2D array. * @param type Array type. Use CV_8UC1,..., CV_64FC4 to create 1-4 * channel matrices, or CV_8UC(n),..., CV_64FC(n) to create * multi-channel (up to CV_CN_MAX channels) matrices. * * @see org.opencv.core.Mat.Mat */ public Mat(int rows, int cols, int type) { nativeObj = n_Mat(rows, cols, type); return; } // // C++: Mat::Mat(Size size, int type) // /** *

Various Mat constructors

* *

These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.

* * @param size 2D array size: Size(cols, rows). In the * Size() constructor, the number of rows and the number of columns * go in the reverse order. * @param type Array type. Use CV_8UC1,..., CV_64FC4 to create 1-4 * channel matrices, or CV_8UC(n),..., CV_64FC(n) to create * multi-channel (up to CV_CN_MAX channels) matrices. * * @see org.opencv.core.Mat.Mat */ public Mat(Size size, int type) { nativeObj = n_Mat(size.width, size.height, type); return; } // // C++: Mat::Mat(int rows, int cols, int type, Scalar s) // /** *

Various Mat constructors

* *

These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.

* * @param rows Number of rows in a 2D array. * @param cols Number of columns in a 2D array. * @param type Array type. Use CV_8UC1,..., CV_64FC4 to create 1-4 * channel matrices, or CV_8UC(n),..., CV_64FC(n) to create * multi-channel (up to CV_CN_MAX channels) matrices. * @param s An optional value to initialize each matrix element with. To set all * the matrix elements to the particular value after the construction, use the * assignment operator Mat.operator=(const Scalar& value). * * @see org.opencv.core.Mat.Mat */ public Mat(int rows, int cols, int type, Scalar s) { nativeObj = n_Mat(rows, cols, type, s.val[0], s.val[1], s.val[2], s.val[3]); return; } // // C++: Mat::Mat(Size size, int type, Scalar s) // /** *

Various Mat constructors

* *

These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.

* * @param size 2D array size: Size(cols, rows). In the * Size() constructor, the number of rows and the number of columns * go in the reverse order. * @param type Array type. Use CV_8UC1,..., CV_64FC4 to create 1-4 * channel matrices, or CV_8UC(n),..., CV_64FC(n) to create * multi-channel (up to CV_CN_MAX channels) matrices. * @param s An optional value to initialize each matrix element with. To set all * the matrix elements to the particular value after the construction, use the * assignment operator Mat.operator=(const Scalar& value). * * @see org.opencv.core.Mat.Mat */ public Mat(Size size, int type, Scalar s) { nativeObj = n_Mat(size.width, size.height, type, s.val[0], s.val[1], s.val[2], s.val[3]); return; } // // C++: Mat::Mat(Mat m, Range rowRange, Range colRange = Range::all()) // /** *

Various Mat constructors

* *

These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.

* * @param m Array that (as a whole or partly) is assigned to the constructed * matrix. No data is copied by these constructors. Instead, the header pointing * to m data or its sub-array is constructed and associated with * it. The reference counter, if any, is incremented. So, when you modify the * matrix formed using such a constructor, you also modify the corresponding * elements of m. If you want to have an independent copy of the * sub-array, use Mat.clone(). * @param rowRange Range of the m rows to take. As usual, the range * start is inclusive and the range end is exclusive. Use Range.all() * to take all the rows. * @param colRange Range of the m columns to take. Use * Range.all() to take all the columns. * * @see org.opencv.core.Mat.Mat */ public Mat(Mat m, Range rowRange, Range colRange) { nativeObj = n_Mat(m.nativeObj, rowRange.start, rowRange.end, colRange.start, colRange.end); return; } /** *

Various Mat constructors

* *

These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.

* * @param m Array that (as a whole or partly) is assigned to the constructed * matrix. No data is copied by these constructors. Instead, the header pointing * to m data or its sub-array is constructed and associated with * it. The reference counter, if any, is incremented. So, when you modify the * matrix formed using such a constructor, you also modify the corresponding * elements of m. If you want to have an independent copy of the * sub-array, use Mat.clone(). * @param rowRange Range of the m rows to take. As usual, the range * start is inclusive and the range end is exclusive. Use Range.all() * to take all the rows. * * @see org.opencv.core.Mat.Mat */ public Mat(Mat m, Range rowRange) { nativeObj = n_Mat(m.nativeObj, rowRange.start, rowRange.end); return; } // // C++: Mat::Mat(Mat m, Rect roi) // /** *

Various Mat constructors

* *

These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.

* * @param m Array that (as a whole or partly) is assigned to the constructed * matrix. No data is copied by these constructors. Instead, the header pointing * to m data or its sub-array is constructed and associated with * it. The reference counter, if any, is incremented. So, when you modify the * matrix formed using such a constructor, you also modify the corresponding * elements of m. If you want to have an independent copy of the * sub-array, use Mat.clone(). * @param roi Region of interest. * * @see org.opencv.core.Mat.Mat */ public Mat(Mat m, Rect roi) { nativeObj = n_Mat(m.nativeObj, roi.y, roi.y + roi.height, roi.x, roi.x + roi.width); return; } // // C++: Mat Mat::adjustROI(int dtop, int dbottom, int dleft, int dright) // /** *

Adjusts a submatrix size and position within the parent matrix.

* *

The method is complimentary to"Mat.locateROI". The typical use of these * functions is to determine the submatrix position within the parent matrix and * then shift the position somehow. Typically, it can be required for filtering * operations when pixels outside of the ROI should be taken into account. When * all the method parameters are positive, the ROI needs to grow in all * directions by the specified amount, for example:

* *

// C++ code:

* *

A.adjustROI(2, 2, 2, 2);

* *

In this example, the matrix size is increased by 4 elements in each * direction. The matrix is shifted by 2 elements to the left and 2 elements up, * which brings in all the necessary pixels for the filtering with the 5x5 * kernel. *

* *

adjustROI forces the adjusted ROI to be inside of the parent * matrix that is boundaries of the adjusted ROI are constrained by boundaries * of the parent matrix. For example, if the submatrix A is located * in the first row of a parent matrix and you called A.adjustROI(2, 2, 2, * 2) then A will not be increased in the upward direction.

* *

The function is used internally by the OpenCV filtering functions, like * "filter2D", morphological operations, and so on.

* * @param dtop Shift of the top submatrix boundary upwards. * @param dbottom Shift of the bottom submatrix boundary downwards. * @param dleft Shift of the left submatrix boundary to the left. * @param dright Shift of the right submatrix boundary to the right. * * @see org.opencv.core.Mat.adjustROI * @see org.opencv.imgproc.Imgproc#copyMakeBorder */ public Mat adjustROI(int dtop, int dbottom, int dleft, int dright) { Mat retVal = new Mat(n_adjustROI(nativeObj, dtop, dbottom, dleft, dright)); return retVal; } // // C++: void Mat::assignTo(Mat m, int type = -1) // /** *

Provides a functional form of convertTo.

* *

This is an internally used method called by the "MatrixExpressions" engine.

* * @param m Destination array. * @param type Desired destination array depth (or -1 if it should be the same * as the source type). * * @see org.opencv.core.Mat.assignTo */ public void assignTo(Mat m, int type) { n_assignTo(nativeObj, m.nativeObj, type); return; } /** *

Provides a functional form of convertTo.

* *

This is an internally used method called by the "MatrixExpressions" engine.

* * @param m Destination array. * * @see org.opencv.core.Mat.assignTo */ public void assignTo(Mat m) { n_assignTo(nativeObj, m.nativeObj); return; } // // C++: int Mat::channels() // /** *

Returns the number of matrix channels.

* *

The method returns the number of matrix channels.

* * @see org.opencv.core.Mat.channels */ public int channels() { int retVal = n_channels(nativeObj); return retVal; } // // C++: int Mat::checkVector(int elemChannels, int depth = -1, bool // requireContinuous = true) // public int checkVector(int elemChannels, int depth, boolean requireContinuous) { int retVal = n_checkVector(nativeObj, elemChannels, depth, requireContinuous); return retVal; } public int checkVector(int elemChannels, int depth) { int retVal = n_checkVector(nativeObj, elemChannels, depth); return retVal; } public int checkVector(int elemChannels) { int retVal = n_checkVector(nativeObj, elemChannels); return retVal; } // // C++: Mat Mat::clone() // /** *

Creates a full copy of the array and the underlying data.

* *

The method creates a full copy of the array. The original step[] * is not taken into account. So, the array copy is a continuous array occupying * total()*elemSize() bytes.

* * @see org.opencv.core.Mat.clone */ public Mat clone() { Mat retVal = new Mat(n_clone(nativeObj)); return retVal; } // // C++: Mat Mat::col(int x) // /** *

Creates a matrix header for the specified matrix column.

* *

The method makes a new header for the specified matrix column and returns it. * This is an O(1) operation, regardless of the matrix size. The underlying data * of the new matrix is shared with the original matrix. See also the "Mat.row" * description.

* * @param x A 0-based column index. * * @see org.opencv.core.Mat.col */ public Mat col(int x) { Mat retVal = new Mat(n_col(nativeObj, x)); return retVal; } // // C++: Mat Mat::colRange(int startcol, int endcol) // /** *

Creates a matrix header for the specified column span.

* *

The method makes a new header for the specified column span of the matrix. * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.

* * @param startcol An inclusive 0-based start index of the column span. * @param endcol An exclusive 0-based ending index of the column span. * * @see org.opencv.core.Mat.colRange */ public Mat colRange(int startcol, int endcol) { Mat retVal = new Mat(n_colRange(nativeObj, startcol, endcol)); return retVal; } // // C++: Mat Mat::colRange(Range r) // /** *

Creates a matrix header for the specified column span.

* *

The method makes a new header for the specified column span of the matrix. * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.

* * @param r "Range" structure containing both the start and the end indices. * * @see org.opencv.core.Mat.colRange */ public Mat colRange(Range r) { Mat retVal = new Mat(n_colRange(nativeObj, r.start, r.end)); return retVal; } // // C++: int Mat::dims() // public int dims() { int retVal = n_dims(nativeObj); return retVal; } // // C++: int Mat::cols() // public int cols() { int retVal = n_cols(nativeObj); return retVal; } // // C++: void Mat::convertTo(Mat& m, int rtype, double alpha = 1, double beta // = 0) // /** *

Converts an array to another data type with optional scaling.

* *

The method converts source pixel values to the target data type. * saturate_cast<> is applied at the end to avoid possible * overflows:

* *

m(x,y) = saturate _ cast<rType>(alpha(*this)(x,y) + beta)

* * @param m output matrix; if it does not have a proper size or type before the * operation, it is reallocated. * @param rtype desired output matrix type or, rather, the depth since the * number of channels are the same as the input has; if rtype is * negative, the output matrix will have the same type as the input. * @param alpha optional scale factor. * @param beta optional delta added to the scaled values. * * @see org.opencv.core.Mat.convertTo */ public void convertTo(Mat m, int rtype, double alpha, double beta) { n_convertTo(nativeObj, m.nativeObj, rtype, alpha, beta); return; } /** *

Converts an array to another data type with optional scaling.

* *

The method converts source pixel values to the target data type. * saturate_cast<> is applied at the end to avoid possible * overflows:

* *

m(x,y) = saturate _ cast<rType>(alpha(*this)(x,y) + beta)

* * @param m output matrix; if it does not have a proper size or type before the * operation, it is reallocated. * @param rtype desired output matrix type or, rather, the depth since the * number of channels are the same as the input has; if rtype is * negative, the output matrix will have the same type as the input. * @param alpha optional scale factor. * * @see org.opencv.core.Mat.convertTo */ public void convertTo(Mat m, int rtype, double alpha) { n_convertTo(nativeObj, m.nativeObj, rtype, alpha); return; } /** *

Converts an array to another data type with optional scaling.

* *

The method converts source pixel values to the target data type. * saturate_cast<> is applied at the end to avoid possible * overflows:

* *

m(x,y) = saturate _ cast<rType>(alpha(*this)(x,y) + beta)

* * @param m output matrix; if it does not have a proper size or type before the * operation, it is reallocated. * @param rtype desired output matrix type or, rather, the depth since the * number of channels are the same as the input has; if rtype is * negative, the output matrix will have the same type as the input. * * @see org.opencv.core.Mat.convertTo */ public void convertTo(Mat m, int rtype) { n_convertTo(nativeObj, m.nativeObj, rtype); return; } // // C++: void Mat::copyTo(Mat& m) // /** *

Copies the matrix to another one.

* *

The method copies the matrix data to another matrix. Before copying the data, * the method invokes

* *

// C++ code:

* *

m.create(this->size(), this->type);

* *

so that the destination matrix is reallocated if needed. While * m.copyTo(m); works flawlessly, the function does not handle the * case of a partial overlap between the source and the destination matrices. *

* *

When the operation mask is specified, and the Mat.create call * shown above reallocated the matrix, the newly allocated matrix is initialized * with all zeros before copying the data.

* * @param m Destination matrix. If it does not have a proper size or type before * the operation, it is reallocated. * * @see org.opencv.core.Mat.copyTo */ public void copyTo(Mat m) { n_copyTo(nativeObj, m.nativeObj); return; } // // C++: void Mat::copyTo(Mat& m, Mat mask) // /** *

Copies the matrix to another one.

* *

The method copies the matrix data to another matrix. Before copying the data, * the method invokes

* *

// C++ code:

* *

m.create(this->size(), this->type);

* *

so that the destination matrix is reallocated if needed. While * m.copyTo(m); works flawlessly, the function does not handle the * case of a partial overlap between the source and the destination matrices. *

* *

When the operation mask is specified, and the Mat.create call * shown above reallocated the matrix, the newly allocated matrix is initialized * with all zeros before copying the data.

* * @param m Destination matrix. If it does not have a proper size or type before * the operation, it is reallocated. * @param mask Operation mask. Its non-zero elements indicate which matrix * elements need to be copied. * * @see org.opencv.core.Mat.copyTo */ public void copyTo(Mat m, Mat mask) { n_copyTo(nativeObj, m.nativeObj, mask.nativeObj); return; } // // C++: void Mat::create(int rows, int cols, int type) // /** *

Allocates new array data if needed.

* *

This is one of the key Mat methods. Most new-style OpenCV * functions and methods that produce arrays call this method for each output * array. The method uses the following algorithm:

*
    *
  • If the current array shape and the type match the new ones, return * immediately. Otherwise, de-reference the previous data by calling * "Mat.release". *
  • Initialize the new header. *
  • Allocate the new data of total()*elemSize() bytes. *
  • Allocate the new, associated with the data, reference counter and set * it to 1. *
*

Such a scheme makes the memory management robust and efficient at the same * time and helps avoid extra typing for you. This means that usually there is * no need to explicitly allocate output arrays. That is, instead of writing: *

* *

// C++ code:

* *

Mat color;...

* *

Mat gray(color.rows, color.cols, color.depth());

* *

cvtColor(color, gray, CV_BGR2GRAY);

* *

you can simply write:

* *

Mat color;...

* *

Mat gray;

* *

cvtColor(color, gray, CV_BGR2GRAY);

* *

because cvtColor, as well as the most of OpenCV functions, calls * Mat.create() for the output array internally. *

* * @param rows New number of rows. * @param cols New number of columns. * @param type New matrix type. * * @see org.opencv.core.Mat.create */ public void create(int rows, int cols, int type) { n_create(nativeObj, rows, cols, type); return; } // // C++: void Mat::create(Size size, int type) // /** *

Allocates new array data if needed.

* *

This is one of the key Mat methods. Most new-style OpenCV * functions and methods that produce arrays call this method for each output * array. The method uses the following algorithm:

*
    *
  • If the current array shape and the type match the new ones, return * immediately. Otherwise, de-reference the previous data by calling * "Mat.release". *
  • Initialize the new header. *
  • Allocate the new data of total()*elemSize() bytes. *
  • Allocate the new, associated with the data, reference counter and set * it to 1. *
*

Such a scheme makes the memory management robust and efficient at the same * time and helps avoid extra typing for you. This means that usually there is * no need to explicitly allocate output arrays. That is, instead of writing: *

* *

// C++ code:

* *

Mat color;...

* *

Mat gray(color.rows, color.cols, color.depth());

* *

cvtColor(color, gray, CV_BGR2GRAY);

* *

you can simply write:

* *

Mat color;...

* *

Mat gray;

* *

cvtColor(color, gray, CV_BGR2GRAY);

* *

because cvtColor, as well as the most of OpenCV functions, calls * Mat.create() for the output array internally. *

* * @param size Alternative new matrix size specification: Size(cols, * rows) * @param type New matrix type. * * @see org.opencv.core.Mat.create */ public void create(Size size, int type) { n_create(nativeObj, size.width, size.height, type); return; } // // C++: Mat Mat::cross(Mat m) // /** *

Computes a cross-product of two 3-element vectors.

* *

The method computes a cross-product of two 3-element vectors. The vectors * must be 3-element floating-point vectors of the same shape and size. The * result is another 3-element vector of the same shape and type as operands.

* * @param m Another cross-product operand. * * @see org.opencv.core.Mat.cross */ public Mat cross(Mat m) { Mat retVal = new Mat(n_cross(nativeObj, m.nativeObj)); return retVal; } // // C++: long Mat::dataAddr() // public long dataAddr() { long retVal = n_dataAddr(nativeObj); return retVal; } // // C++: int Mat::depth() // /** *

Returns the depth of a matrix element.

* *

The method returns the identifier of the matrix element depth (the type of * each individual channel). For example, for a 16-bit signed element array, the * method returns CV_16S. A complete list of matrix types contains * the following values:

*
    *
  • CV_8U - 8-bit unsigned integers (0..255) *
  • CV_8S - 8-bit signed integers (-128..127) *
  • CV_16U - 16-bit unsigned integers (0..65535) *
  • CV_16S - 16-bit signed integers (-32768..32767) *
  • CV_32S - 32-bit signed integers (-2147483648..2147483647) *
  • CV_32F - 32-bit floating-point numbers (-FLT_MAX..FLT_MAX, * INF, NAN) *
  • CV_64F - 64-bit floating-point numbers (-DBL_MAX..DBL_MAX, * INF, NAN) *
* * @see org.opencv.core.Mat.depth */ public int depth() { int retVal = n_depth(nativeObj); return retVal; } // // C++: Mat Mat::diag(int d = 0) // /** *

Extracts a diagonal from a matrix, or creates a diagonal matrix.

* *

The method makes a new header for the specified matrix diagonal. The new * matrix is represented as a single-column matrix. Similarly to "Mat.row" and * "Mat.col", this is an O(1) operation.

* * @param d Single-column matrix that forms a diagonal matrix or index of the * diagonal, with the following values: *
    *
  • d=0 is the main diagonal. *
  • d>0 is a diagonal from the lower half. For example, d=1 * means the diagonal is set immediately below the main one. *
  • d<0 is a diagonal from the upper half. For example, d=1 * means the diagonal is set immediately above the main one. *
* * @see org.opencv.core.Mat.diag */ public Mat diag(int d) { Mat retVal = new Mat(n_diag(nativeObj, d)); return retVal; } /** *

Extracts a diagonal from a matrix, or creates a diagonal matrix.

* *

The method makes a new header for the specified matrix diagonal. The new * matrix is represented as a single-column matrix. Similarly to "Mat.row" and * "Mat.col", this is an O(1) operation.

* * @see org.opencv.core.Mat.diag */ public Mat diag() { Mat retVal = new Mat(n_diag(nativeObj, 0)); return retVal; } // // C++: static Mat Mat::diag(Mat d) // /** *

Extracts a diagonal from a matrix, or creates a diagonal matrix.

* *

The method makes a new header for the specified matrix diagonal. The new * matrix is represented as a single-column matrix. Similarly to "Mat.row" and * "Mat.col", this is an O(1) operation.

* * @param d Single-column matrix that forms a diagonal matrix or index of the * diagonal, with the following values: *
    *
  • d=0 is the main diagonal. *
  • d>0 is a diagonal from the lower half. For example, d=1 * means the diagonal is set immediately below the main one. *
  • d<0 is a diagonal from the upper half. For example, d=1 * means the diagonal is set immediately above the main one. *
* * @see org.opencv.core.Mat.diag */ public static Mat diag(Mat d) { Mat retVal = new Mat(n_diag(d.nativeObj)); return retVal; } // // C++: double Mat::dot(Mat m) // /** *

Computes a dot-product of two vectors.

* *

The method computes a dot-product of two matrices. If the matrices are not * single-column or single-row vectors, the top-to-bottom left-to-right scan * ordering is used to treat them as 1D vectors. The vectors must have the same * size and type. If the matrices have more than one channel, the dot products * from all the channels are summed together.

* * @param m another dot-product operand. * * @see org.opencv.core.Mat.dot */ public double dot(Mat m) { double retVal = n_dot(nativeObj, m.nativeObj); return retVal; } // // C++: size_t Mat::elemSize() // /** *

Returns the matrix element size in bytes.

* *

The method returns the matrix element size in bytes. For example, if the * matrix type is CV_16SC3, the method returns 3*sizeof(short) * or 6.

* * @see org.opencv.core.Mat.elemSize */ public long elemSize() { long retVal = n_elemSize(nativeObj); return retVal; } // // C++: size_t Mat::elemSize1() // /** *

Returns the size of each matrix element channel in bytes.

* *

The method returns the matrix element channel size in bytes, that is, it * ignores the number of channels. For example, if the matrix type is * CV_16SC3, the method returns sizeof(short) or 2.

* * @see org.opencv.core.Mat.elemSize1 */ public long elemSize1() { long retVal = n_elemSize1(nativeObj); return retVal; } // // C++: bool Mat::empty() // /** *

Returns true if the array has no elements.

* *

The method returns true if Mat.total() is 0 or if * Mat.data is NULL. Because of pop_back() and * resize() methods M.total() == 0 does not imply that * M.data == NULL.

* * @see org.opencv.core.Mat.empty */ public boolean empty() { boolean retVal = n_empty(nativeObj); return retVal; } // // C++: static Mat Mat::eye(int rows, int cols, int type) // /** *

Returns an identity matrix of the specified size and type.

* *

The method returns a Matlab-style identity matrix initializer, similarly to * "Mat.zeros". Similarly to"Mat.ones", you can use a scale operation to * create a scaled identity matrix efficiently:

* *

// C++ code:

* *

// make a 4x4 diagonal matrix with 0.1's on the diagonal.

* *

Mat A = Mat.eye(4, 4, CV_32F)*0.1;

* * @param rows Number of rows. * @param cols Number of columns. * @param type Created matrix type. * * @see org.opencv.core.Mat.eye */ public static Mat eye(int rows, int cols, int type) { Mat retVal = new Mat(n_eye(rows, cols, type)); return retVal; } // // C++: static Mat Mat::eye(Size size, int type) // /** *

Returns an identity matrix of the specified size and type.

* *

The method returns a Matlab-style identity matrix initializer, similarly to * "Mat.zeros". Similarly to"Mat.ones", you can use a scale operation to * create a scaled identity matrix efficiently:

* *

// C++ code:

* *

// make a 4x4 diagonal matrix with 0.1's on the diagonal.

* *

Mat A = Mat.eye(4, 4, CV_32F)*0.1;

* * @param size Alternative matrix size specification as Size(cols, * rows). * @param type Created matrix type. * * @see org.opencv.core.Mat.eye */ public static Mat eye(Size size, int type) { Mat retVal = new Mat(n_eye(size.width, size.height, type)); return retVal; } // // C++: Mat Mat::inv(int method = DECOMP_LU) // /** *

Inverses a matrix.

* *

The method performs a matrix inversion by means of matrix expressions. This * means that a temporary matrix inversion object is returned by the method and * can be used further as a part of more complex matrix expressions or can be * assigned to a matrix.

* * @param method Matrix inversion method. Possible values are the following: *
    *
  • DECOMP_LU is the LU decomposition. The matrix must be non-singular. *
  • DECOMP_CHOLESKY is the Cholesky LL^T decomposition for * symmetrical positively defined matrices only. This type is about twice faster * than LU on big matrices. *
  • DECOMP_SVD is the SVD decomposition. If the matrix is singular or even * non-square, the pseudo inversion is computed. *
* * @see org.opencv.core.Mat.inv */ public Mat inv(int method) { Mat retVal = new Mat(n_inv(nativeObj, method)); return retVal; } /** *

Inverses a matrix.

* *

The method performs a matrix inversion by means of matrix expressions. This * means that a temporary matrix inversion object is returned by the method and * can be used further as a part of more complex matrix expressions or can be * assigned to a matrix.

* * @see org.opencv.core.Mat.inv */ public Mat inv() { Mat retVal = new Mat(n_inv(nativeObj)); return retVal; } // // C++: bool Mat::isContinuous() // /** *

Reports whether the matrix is continuous or not.

* *

The method returns true if the matrix elements are stored * continuously without gaps at the end of each row. Otherwise, it returns * false. Obviously, 1x1 or 1xN matrices * are always continuous. Matrices created with "Mat.create" are always * continuous. But if you extract a part of the matrix using "Mat.col", * "Mat.diag", and so on, or constructed a matrix header for externally * allocated data, such matrices may no longer have this property. * The continuity flag is stored as a bit in the Mat.flags field * and is computed automatically when you construct a matrix header. Thus, the * continuity check is a very fast operation, though theoretically it could be * done as follows:

* *

// C++ code:

* *

// alternative implementation of Mat.isContinuous()

* *

bool myCheckMatContinuity(const Mat& m)

* * *

//return (m.flags & Mat.CONTINUOUS_FLAG) != 0;

* *

return m.rows == 1 || m.step == m.cols*m.elemSize();

* * *

The method is used in quite a few of OpenCV functions. The point is that * element-wise operations (such as arithmetic and logical operations, math * functions, alpha blending, color space transformations, and others) do not * depend on the image geometry. Thus, if all the input and output arrays are * continuous, the functions can process them as very long single-row vectors. * The example below illustrates how an alpha-blending function can be * implemented.

* *

template

* *

void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst)

* * *

const float alpha_scale = (float)std.numeric_limits.max(),

* *

inv_scale = 1.f/alpha_scale;

* *

CV_Assert(src1.type() == src2.type() &&

* *

src1.type() == CV_MAKETYPE(DataType.depth, 4) &&

* *

src1.size() == src2.size());

* *

Size size = src1.size();

* *

dst.create(size, src1.type());

* *

// here is the idiom: check the arrays for continuity and,

* *

// if this is the case,

* *

// treat the arrays as 1D vectors

* *

if(src1.isContinuous() && src2.isContinuous() && dst.isContinuous())

* * *

size.width *= size.height;

* *

size.height = 1;

* * *

size.width *= 4;

* *

for(int i = 0; i < size.height; i++)

* * *

// when the arrays are continuous,

* *

// the outer loop is executed only once

* *

const T* ptr1 = src1.ptr(i);

* *

const T* ptr2 = src2.ptr(i);

* *

T* dptr = dst.ptr(i);

* *

for(int j = 0; j < size.width; j += 4)

* * *

float alpha = ptr1[j+3]*inv_scale, beta = ptr2[j+3]*inv_scale;

* *

dptr[j] = saturate_cast(ptr1[j]*alpha + ptr2[j]*beta);

* *

dptr[j+1] = saturate_cast(ptr1[j+1]*alpha + ptr2[j+1]*beta);

* *

dptr[j+2] = saturate_cast(ptr1[j+2]*alpha + ptr2[j+2]*beta);

* *

dptr[j+3] = saturate_cast((1 - (1-alpha)*(1-beta))*alpha_scale);

* * * * *

This approach, while being very simple, can boost the performance of a simple * element-operation by 10-20 percents, especially if the image is rather small * and the operation is quite simple. *

* *

Another OpenCV idiom in this function, a call of "Mat.create" for the * destination array, that allocates the destination array unless it already has * the proper size and type. And while the newly allocated arrays are always * continuous, you still need to check the destination array because * "Mat.create" does not always allocate a new matrix.

* * @see org.opencv.core.Mat.isContinuous */ public boolean isContinuous() { boolean retVal = n_isContinuous(nativeObj); return retVal; } // // C++: bool Mat::isSubmatrix() // public boolean isSubmatrix() { boolean retVal = n_isSubmatrix(nativeObj); return retVal; } // // C++: void Mat::locateROI(Size wholeSize, Point ofs) // /** *

Locates the matrix header within a parent matrix.

* *

After you extracted a submatrix from a matrix using "Mat.row", "Mat.col", * "Mat.rowRange", "Mat.colRange", and others, the resultant submatrix points * just to the part of the original big matrix. However, each submatrix contains * information (represented by datastart and dataend * fields) that helps reconstruct the original matrix size and the position of * the extracted submatrix within the original matrix. The method * locateROI does exactly that.

* * @param wholeSize Output parameter that contains the size of the whole matrix * containing *this as a part. * @param ofs Output parameter that contains an offset of *this * inside the whole matrix. * * @see org.opencv.core.Mat.locateROI */ public void locateROI(Size wholeSize, Point ofs) { double[] wholeSize_out = new double[2]; double[] ofs_out = new double[2]; locateROI_0(nativeObj, wholeSize_out, ofs_out); if(wholeSize!=null){ wholeSize.width = wholeSize_out[0]; wholeSize.height = wholeSize_out[1]; } if(ofs!=null){ ofs.x = ofs_out[0]; ofs.y = ofs_out[1]; } return; } // // C++: Mat Mat::mul(Mat m, double scale = 1) // /** *

Performs an element-wise multiplication or division of the two matrices.

* *

The method returns a temporary object encoding per-element array * multiplication, with optional scale. Note that this is not a matrix * multiplication that corresponds to a simpler "*" operator. * Example:

* *

// C++ code:

* *

Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)

* * @param m Another array of the same type and the same size as * *this, or a matrix expression. * @param scale Optional scale factor. * * @see org.opencv.core.Mat.mul */ public Mat mul(Mat m, double scale) { Mat retVal = new Mat(n_mul(nativeObj, m.nativeObj, scale)); return retVal; } /** *

Performs an element-wise multiplication or division of the two matrices.

* *

The method returns a temporary object encoding per-element array * multiplication, with optional scale. Note that this is not a matrix * multiplication that corresponds to a simpler "*" operator. * Example:

* *

// C++ code:

* *

Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)

* * @param m Another array of the same type and the same size as * *this, or a matrix expression. * * @see org.opencv.core.Mat.mul */ public Mat mul(Mat m) { Mat retVal = new Mat(n_mul(nativeObj, m.nativeObj)); return retVal; } // // C++: static Mat Mat::ones(int rows, int cols, int type) // /** *

Returns an array of all 1's of the specified size and type.

* *

The method returns a Matlab-style 1's array initializer, similarly * to"Mat.zeros". Note that using this method you can initialize an array with * an arbitrary value, using the following Matlab idiom:

* *

// C++ code:

* *

Mat A = Mat.ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.

* *

The above operation does not form a 100x100 matrix of 1's and then multiply * it by 3. Instead, it just remembers the scale factor (3 in this case) and use * it when actually invoking the matrix initializer. *

* * @param rows Number of rows. * @param cols Number of columns. * @param type Created matrix type. * * @see org.opencv.core.Mat.ones */ public static Mat ones(int rows, int cols, int type) { Mat retVal = new Mat(n_ones(rows, cols, type)); return retVal; } // // C++: static Mat Mat::ones(Size size, int type) // /** *

Returns an array of all 1's of the specified size and type.

* *

The method returns a Matlab-style 1's array initializer, similarly * to"Mat.zeros". Note that using this method you can initialize an array with * an arbitrary value, using the following Matlab idiom:

* *

// C++ code:

* *

Mat A = Mat.ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.

* *

The above operation does not form a 100x100 matrix of 1's and then multiply * it by 3. Instead, it just remembers the scale factor (3 in this case) and use * it when actually invoking the matrix initializer. *

* * @param size Alternative to the matrix size specification Size(cols, * rows). * @param type Created matrix type. * * @see org.opencv.core.Mat.ones */ public static Mat ones(Size size, int type) { Mat retVal = new Mat(n_ones(size.width, size.height, type)); return retVal; } // // C++: void Mat::push_back(Mat m) // /** *

Adds elements to the bottom of the matrix.

* *

The methods add one or more elements to the bottom of the matrix. They * emulate the corresponding method of the STL vector class. When * elem is Mat, its type and the number of columns * must be the same as in the container matrix.

* * @param m Added line(s). * * @see org.opencv.core.Mat.push_back */ public void push_back(Mat m) { n_push_back(nativeObj, m.nativeObj); return; } // // C++: void Mat::release() // /** *

Decrements the reference counter and deallocates the matrix if needed.

* *

The method decrements the reference counter associated with the matrix data. * When the reference counter reaches 0, the matrix data is deallocated and the * data and the reference counter pointers are set to NULL's. If the matrix * header points to an external data set (see "Mat.Mat"), the reference counter * is NULL, and the method has no effect in this case.

* *

This method can be called manually to force the matrix data deallocation. But * since this method is automatically called in the destructor, or by any other * method that changes the data pointer, it is usually not needed. The reference * counter decrement and check for 0 is an atomic operation on the platforms * that support it. Thus, it is safe to operate on the same matrices * asynchronously in different threads.

* * @see org.opencv.core.Mat.release */ public void release() { n_release(nativeObj); return; } // // C++: Mat Mat::reshape(int cn, int rows = 0) // /** *

Changes the shape and/or the number of channels of a 2D matrix without * copying the data.

* *

The method makes a new matrix header for *this elements. The new * matrix may have a different size and/or different number of channels. Any * combination is possible if:

*
    *
  • No extra elements are included into the new matrix and no elements are * excluded. Consequently, the product rows*cols*channels() must * stay the same after the transformation. *
  • No data is copied. That is, this is an O(1) operation. Consequently, * if you change the number of rows, or the operation changes the indices of * elements row in some other way, the matrix must be continuous. See * "Mat.isContinuous". *
*

For example, if there is a set of 3D points stored as an STL vector, and you * want to represent the points as a 3xN matrix, do the following: *

* *

// C++ code:

* *

std.vector vec;...

* *

Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation

* *

reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel.

* *

// Also, an O(1) operation

* *

t(); // finally, transpose the Nx3 matrix.

* *

// This involves copying all the elements

* * @param cn New number of channels. If the parameter is 0, the number of * channels remains the same. * @param rows New number of rows. If the parameter is 0, the number of rows * remains the same. * * @see org.opencv.core.Mat.reshape */ public Mat reshape(int cn, int rows) { Mat retVal = new Mat(n_reshape(nativeObj, cn, rows)); return retVal; } /** *

Changes the shape and/or the number of channels of a 2D matrix without * copying the data.

* *

The method makes a new matrix header for *this elements. The new * matrix may have a different size and/or different number of channels. Any * combination is possible if:

*
    *
  • No extra elements are included into the new matrix and no elements are * excluded. Consequently, the product rows*cols*channels() must * stay the same after the transformation. *
  • No data is copied. That is, this is an O(1) operation. Consequently, * if you change the number of rows, or the operation changes the indices of * elements row in some other way, the matrix must be continuous. See * "Mat.isContinuous". *
*

For example, if there is a set of 3D points stored as an STL vector, and you * want to represent the points as a 3xN matrix, do the following: *

* *

// C++ code:

* *

std.vector vec;...

* *

Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation

* *

reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel.

* *

// Also, an O(1) operation

* *

t(); // finally, transpose the Nx3 matrix.

* *

// This involves copying all the elements

* * @param cn New number of channels. If the parameter is 0, the number of * channels remains the same. * * @see org.opencv.core.Mat.reshape */ public Mat reshape(int cn) { Mat retVal = new Mat(n_reshape(nativeObj, cn)); return retVal; } // // C++: Mat Mat::row(int y) // /** *

Creates a matrix header for the specified matrix row.

* *

The method makes a new header for the specified matrix row and returns it. * This is an O(1) operation, regardless of the matrix size. The underlying data * of the new matrix is shared with the original matrix. Here is the example of * one of the classical basic matrix processing operations, axpy, * used by LU and many other algorithms:

* *

// C++ code:

* *

inline void matrix_axpy(Mat& A, int i, int j, double alpha)

* * *

A.row(i) += A.row(j)*alpha;

* * *

Note:

* *

In the current implementation, the following code does not work as expected: *

* *

// C++ code:

* *

Mat A;...

* *

A.row(i) = A.row(j); // will not work

* *

This happens because A.row(i) forms a temporary header that is * further assigned to another header. Remember that each of these operations is * O(1), that is, no data is copied. Thus, the above assignment is not true if * you may have expected the j-th row to be copied to the i-th row. To achieve * that, you should either turn this simple assignment into an expression or use * the "Mat.copyTo" method:

* *

Mat A;...

* *

// works, but looks a bit obscure.

* *

A.row(i) = A.row(j) + 0;

* *

// this is a bit longer, but the recommended method.

* *

A.row(j).copyTo(A.row(i));

* * @param y A 0-based row index. * * @see org.opencv.core.Mat.row */ public Mat row(int y) { Mat retVal = new Mat(n_row(nativeObj, y)); return retVal; } // // C++: Mat Mat::rowRange(int startrow, int endrow) // /** *

Creates a matrix header for the specified row span.

* *

The method makes a new header for the specified row span of the matrix. * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.

* * @param startrow An inclusive 0-based start index of the row span. * @param endrow An exclusive 0-based ending index of the row span. * * @see org.opencv.core.Mat.rowRange */ public Mat rowRange(int startrow, int endrow) { Mat retVal = new Mat(n_rowRange(nativeObj, startrow, endrow)); return retVal; } // // C++: Mat Mat::rowRange(Range r) // /** *

Creates a matrix header for the specified row span.

* *

The method makes a new header for the specified row span of the matrix. * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.

* * @param r "Range" structure containing both the start and the end indices. * * @see org.opencv.core.Mat.rowRange */ public Mat rowRange(Range r) { Mat retVal = new Mat(n_rowRange(nativeObj, r.start, r.end)); return retVal; } // // C++: int Mat::rows() // public int rows() { int retVal = n_rows(nativeObj); return retVal; } // // C++: Mat Mat::operator =(Scalar s) // public Mat setTo(Scalar s) { Mat retVal = new Mat(n_setTo(nativeObj, s.val[0], s.val[1], s.val[2], s.val[3])); return retVal; } // // C++: Mat Mat::setTo(Scalar value, Mat mask = Mat()) // /** *

Sets all or some of the array elements to the specified value.

* * @param value Assigned scalar converted to the actual array type. * @param mask Operation mask of the same size as *this. This is an * advanced variant of the Mat.operator=(const Scalar& s) * operator. * * @see org.opencv.core.Mat.setTo */ public Mat setTo(Scalar value, Mat mask) { Mat retVal = new Mat(n_setTo(nativeObj, value.val[0], value.val[1], value.val[2], value.val[3], mask.nativeObj)); return retVal; } // // C++: Mat Mat::setTo(Mat value, Mat mask = Mat()) // /** *

Sets all or some of the array elements to the specified value.

* * @param value Assigned scalar converted to the actual array type. * @param mask Operation mask of the same size as *this. This is an * advanced variant of the Mat.operator=(const Scalar& s) * operator. * * @see org.opencv.core.Mat.setTo */ public Mat setTo(Mat value, Mat mask) { Mat retVal = new Mat(n_setTo(nativeObj, value.nativeObj, mask.nativeObj)); return retVal; } /** *

Sets all or some of the array elements to the specified value.

* * @param value Assigned scalar converted to the actual array type. * * @see org.opencv.core.Mat.setTo */ public Mat setTo(Mat value) { Mat retVal = new Mat(n_setTo(nativeObj, value.nativeObj)); return retVal; } // // C++: Size Mat::size() // /** *

Returns a matrix size.

* *

The method returns a matrix size: Size(cols, rows). When the * matrix is more than 2-dimensional, the returned size is (-1, -1).

* * @see org.opencv.core.Mat.size */ public Size size() { Size retVal = new Size(n_size(nativeObj)); return retVal; } // // C++: size_t Mat::step1(int i = 0) // /** *

Returns a normalized step.

* *

The method returns a matrix step divided by "Mat.elemSize1()". It can be * useful to quickly access an arbitrary matrix element.

* * @param i a i * * @see org.opencv.core.Mat.step1 */ public long step1(int i) { long retVal = n_step1(nativeObj, i); return retVal; } /** *

Returns a normalized step.

* *

The method returns a matrix step divided by "Mat.elemSize1()". It can be * useful to quickly access an arbitrary matrix element.

* * @see org.opencv.core.Mat.step1 */ public long step1() { long retVal = n_step1(nativeObj); return retVal; } // // C++: Mat Mat::operator()(int rowStart, int rowEnd, int colStart, int // colEnd) // /** *

Extracts a rectangular submatrix.

* *

The operators make a new header for the specified sub-array of * *this. They are the most generalized forms of "Mat.row", * "Mat.col", "Mat.rowRange", and "Mat.colRange". For example, * A(Range(0, 10), Range.all()) is equivalent to A.rowRange(0, * 10). Similarly to all of the above, the operators are O(1) operations, * that is, no matrix data is copied.

* * @param rowStart a rowStart * @param rowEnd a rowEnd * @param colStart a colStart * @param colEnd a colEnd * * @see org.opencv.core.Mat.operator() */ public Mat submat(int rowStart, int rowEnd, int colStart, int colEnd) { Mat retVal = new Mat(n_submat_rr(nativeObj, rowStart, rowEnd, colStart, colEnd)); return retVal; } // // C++: Mat Mat::operator()(Range rowRange, Range colRange) // /** *

Extracts a rectangular submatrix.

* *

The operators make a new header for the specified sub-array of * *this. They are the most generalized forms of "Mat.row", * "Mat.col", "Mat.rowRange", and "Mat.colRange". For example, * A(Range(0, 10), Range.all()) is equivalent to A.rowRange(0, * 10). Similarly to all of the above, the operators are O(1) operations, * that is, no matrix data is copied.

* * @param rowRange Start and end row of the extracted submatrix. The upper * boundary is not included. To select all the rows, use Range.all(). * @param colRange Start and end column of the extracted submatrix. The upper * boundary is not included. To select all the columns, use Range.all(). * * @see org.opencv.core.Mat.operator() */ public Mat submat(Range rowRange, Range colRange) { Mat retVal = new Mat(n_submat_rr(nativeObj, rowRange.start, rowRange.end, colRange.start, colRange.end)); return retVal; } // // C++: Mat Mat::operator()(Rect roi) // /** *

Extracts a rectangular submatrix.

* *

The operators make a new header for the specified sub-array of * *this. They are the most generalized forms of "Mat.row", * "Mat.col", "Mat.rowRange", and "Mat.colRange". For example, * A(Range(0, 10), Range.all()) is equivalent to A.rowRange(0, * 10). Similarly to all of the above, the operators are O(1) operations, * that is, no matrix data is copied.

* * @param roi Extracted submatrix specified as a rectangle. * * @see org.opencv.core.Mat.operator() */ public Mat submat(Rect roi) { Mat retVal = new Mat(n_submat(nativeObj, roi.x, roi.y, roi.width, roi.height)); return retVal; } // // C++: Mat Mat::t() // /** *

Transposes a matrix.

* *

The method performs matrix transposition by means of matrix expressions. It * does not perform the actual transposition but returns a temporary matrix * transposition object that can be further used as a part of more complex * matrix expressions or can be assigned to a matrix:

* *

// C++ code:

* *

Mat A1 = A + Mat.eye(A.size(), A.type)*lambda;

* *

Mat C = A1.t()*A1; // compute (A + lambda*I)^t * (A + lamda*I)

* * @see org.opencv.core.Mat.t */ public Mat t() { Mat retVal = new Mat(n_t(nativeObj)); return retVal; } // // C++: size_t Mat::total() // /** *

Returns the total number of array elements.

* *

The method returns the number of array elements (a number of pixels if the * array represents an image).

* * @see org.opencv.core.Mat.total */ public long total() { long retVal = n_total(nativeObj); return retVal; } // // C++: int Mat::type() // /** *

Returns the type of a matrix element.

* *

The method returns a matrix element type. This is an identifier compatible * with the CvMat type system, like CV_16SC3 or 16-bit * signed 3-channel array, and so on.

* * @see org.opencv.core.Mat.type */ public int type() { int retVal = n_type(nativeObj); return retVal; } // // C++: static Mat Mat::zeros(int rows, int cols, int type) // /** *

Returns a zero array of the specified size and type.

* *

The method returns a Matlab-style zero array initializer. It can be used to * quickly form a constant array as a function parameter, part of a matrix * expression, or as a matrix initializer. *

* *

// C++ code:

* *

Mat A;

* *

A = Mat.zeros(3, 3, CV_32F);

* *

In the example above, a new matrix is allocated only if A is not * a 3x3 floating-point matrix. Otherwise, the existing matrix A is * filled with zeros. *

* * @param rows Number of rows. * @param cols Number of columns. * @param type Created matrix type. * * @see org.opencv.core.Mat.zeros */ public static Mat zeros(int rows, int cols, int type) { Mat retVal = new Mat(n_zeros(rows, cols, type)); return retVal; } // // C++: static Mat Mat::zeros(Size size, int type) // /** *

Returns a zero array of the specified size and type.

* *

The method returns a Matlab-style zero array initializer. It can be used to * quickly form a constant array as a function parameter, part of a matrix * expression, or as a matrix initializer. *

* *

// C++ code:

* *

Mat A;

* *

A = Mat.zeros(3, 3, CV_32F);

* *

In the example above, a new matrix is allocated only if A is not * a 3x3 floating-point matrix. Otherwise, the existing matrix A is * filled with zeros. *

* * @param size Alternative to the matrix size specification Size(cols, * rows). * @param type Created matrix type. * * @see org.opencv.core.Mat.zeros */ public static Mat zeros(Size size, int type) { Mat retVal = new Mat(n_zeros(size.width, size.height, type)); return retVal; } @Override protected void finalize() throws Throwable { n_delete(nativeObj); super.finalize(); } @Override public String toString() { return "Mat [ " + rows() + "*" + cols() + "*" + CvType.typeToString(type()) + ", isCont=" + isContinuous() + ", isSubmat=" + isSubmatrix() + ", nativeObj=0x" + Long.toHexString(nativeObj) + ", dataAddr=0x" + Long.toHexString(dataAddr()) + " ]"; } public String dump() { return nDump(nativeObj); } public int put(int row, int col, double... data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); return nPutD(nativeObj, row, col, data.length, data); } public int put(int row, int col, float[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_32F) { return nPutF(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int put(int row, int col, int[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_32S) { return nPutI(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int put(int row, int col, short[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_16U || CvType.depth(t) == CvType.CV_16S) { return nPutS(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int put(int row, int col, byte[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_8U || CvType.depth(t) == CvType.CV_8S) { return nPutB(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int get(int row, int col, byte[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_8U || CvType.depth(t) == CvType.CV_8S) { return nGetB(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int get(int row, int col, short[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_16U || CvType.depth(t) == CvType.CV_16S) { return nGetS(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int get(int row, int col, int[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_32S) { return nGetI(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int get(int row, int col, float[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_32F) { return nGetF(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int get(int row, int col, double[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_64F) { return nGetD(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public double[] get(int row, int col) { return nGet(nativeObj, row, col); } public int height() { return rows(); } public int width() { return cols(); } public long getNativeObjAddr() { return nativeObj; } // C++: Mat::Mat() private static native long n_Mat(); // C++: Mat::Mat(int rows, int cols, int type) private static native long n_Mat(int rows, int cols, int type); // C++: Mat::Mat(Size size, int type) private static native long n_Mat(double size_width, double size_height, int type); // C++: Mat::Mat(int rows, int cols, int type, Scalar s) private static native long n_Mat(int rows, int cols, int type, double s_val0, double s_val1, double s_val2, double s_val3); // C++: Mat::Mat(Size size, int type, Scalar s) private static native long n_Mat(double size_width, double size_height, int type, double s_val0, double s_val1, double s_val2, double s_val3); // C++: Mat::Mat(Mat m, Range rowRange, Range colRange = Range::all()) private static native long n_Mat(long m_nativeObj, int rowRange_start, int rowRange_end, int colRange_start, int colRange_end); private static native long n_Mat(long m_nativeObj, int rowRange_start, int rowRange_end); // C++: Mat Mat::adjustROI(int dtop, int dbottom, int dleft, int dright) private static native long n_adjustROI(long nativeObj, int dtop, int dbottom, int dleft, int dright); // C++: void Mat::assignTo(Mat m, int type = -1) private static native void n_assignTo(long nativeObj, long m_nativeObj, int type); private static native void n_assignTo(long nativeObj, long m_nativeObj); // C++: int Mat::channels() private static native int n_channels(long nativeObj); // C++: int Mat::checkVector(int elemChannels, int depth = -1, bool // requireContinuous = true) private static native int n_checkVector(long nativeObj, int elemChannels, int depth, boolean requireContinuous); private static native int n_checkVector(long nativeObj, int elemChannels, int depth); private static native int n_checkVector(long nativeObj, int elemChannels); // C++: Mat Mat::clone() private static native long n_clone(long nativeObj); // C++: Mat Mat::col(int x) private static native long n_col(long nativeObj, int x); // C++: Mat Mat::colRange(int startcol, int endcol) private static native long n_colRange(long nativeObj, int startcol, int endcol); // C++: int Mat::dims() private static native int n_dims(long nativeObj); // C++: int Mat::cols() private static native int n_cols(long nativeObj); // C++: void Mat::convertTo(Mat& m, int rtype, double alpha = 1, double beta // = 0) private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype, double alpha, double beta); private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype, double alpha); private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype); // C++: void Mat::copyTo(Mat& m) private static native void n_copyTo(long nativeObj, long m_nativeObj); // C++: void Mat::copyTo(Mat& m, Mat mask) private static native void n_copyTo(long nativeObj, long m_nativeObj, long mask_nativeObj); // C++: void Mat::create(int rows, int cols, int type) private static native void n_create(long nativeObj, int rows, int cols, int type); // C++: void Mat::create(Size size, int type) private static native void n_create(long nativeObj, double size_width, double size_height, int type); // C++: Mat Mat::cross(Mat m) private static native long n_cross(long nativeObj, long m_nativeObj); // C++: long Mat::dataAddr() private static native long n_dataAddr(long nativeObj); // C++: int Mat::depth() private static native int n_depth(long nativeObj); // C++: Mat Mat::diag(int d = 0) private static native long n_diag(long nativeObj, int d); // C++: static Mat Mat::diag(Mat d) private static native long n_diag(long d_nativeObj); // C++: double Mat::dot(Mat m) private static native double n_dot(long nativeObj, long m_nativeObj); // C++: size_t Mat::elemSize() private static native long n_elemSize(long nativeObj); // C++: size_t Mat::elemSize1() private static native long n_elemSize1(long nativeObj); // C++: bool Mat::empty() private static native boolean n_empty(long nativeObj); // C++: static Mat Mat::eye(int rows, int cols, int type) private static native long n_eye(int rows, int cols, int type); // C++: static Mat Mat::eye(Size size, int type) private static native long n_eye(double size_width, double size_height, int type); // C++: Mat Mat::inv(int method = DECOMP_LU) private static native long n_inv(long nativeObj, int method); private static native long n_inv(long nativeObj); // C++: bool Mat::isContinuous() private static native boolean n_isContinuous(long nativeObj); // C++: bool Mat::isSubmatrix() private static native boolean n_isSubmatrix(long nativeObj); // C++: void Mat::locateROI(Size wholeSize, Point ofs) private static native void locateROI_0(long nativeObj, double[] wholeSize_out, double[] ofs_out); // C++: Mat Mat::mul(Mat m, double scale = 1) private static native long n_mul(long nativeObj, long m_nativeObj, double scale); private static native long n_mul(long nativeObj, long m_nativeObj); // C++: static Mat Mat::ones(int rows, int cols, int type) private static native long n_ones(int rows, int cols, int type); // C++: static Mat Mat::ones(Size size, int type) private static native long n_ones(double size_width, double size_height, int type); // C++: void Mat::push_back(Mat m) private static native void n_push_back(long nativeObj, long m_nativeObj); // C++: void Mat::release() private static native void n_release(long nativeObj); // C++: Mat Mat::reshape(int cn, int rows = 0) private static native long n_reshape(long nativeObj, int cn, int rows); private static native long n_reshape(long nativeObj, int cn); // C++: Mat Mat::row(int y) private static native long n_row(long nativeObj, int y); // C++: Mat Mat::rowRange(int startrow, int endrow) private static native long n_rowRange(long nativeObj, int startrow, int endrow); // C++: int Mat::rows() private static native int n_rows(long nativeObj); // C++: Mat Mat::operator =(Scalar s) private static native long n_setTo(long nativeObj, double s_val0, double s_val1, double s_val2, double s_val3); // C++: Mat Mat::setTo(Scalar value, Mat mask = Mat()) private static native long n_setTo(long nativeObj, double s_val0, double s_val1, double s_val2, double s_val3, long mask_nativeObj); // C++: Mat Mat::setTo(Mat value, Mat mask = Mat()) private static native long n_setTo(long nativeObj, long value_nativeObj, long mask_nativeObj); private static native long n_setTo(long nativeObj, long value_nativeObj); // C++: Size Mat::size() private static native double[] n_size(long nativeObj); // C++: size_t Mat::step1(int i = 0) private static native long n_step1(long nativeObj, int i); private static native long n_step1(long nativeObj); // C++: Mat Mat::operator()(Range rowRange, Range colRange) private static native long n_submat_rr(long nativeObj, int rowRange_start, int rowRange_end, int colRange_start, int colRange_end); // C++: Mat Mat::operator()(Rect roi) private static native long n_submat(long nativeObj, int roi_x, int roi_y, int roi_width, int roi_height); // C++: Mat Mat::t() private static native long n_t(long nativeObj); // C++: size_t Mat::total() private static native long n_total(long nativeObj); // C++: int Mat::type() private static native int n_type(long nativeObj); // C++: static Mat Mat::zeros(int rows, int cols, int type) private static native long n_zeros(int rows, int cols, int type); // C++: static Mat Mat::zeros(Size size, int type) private static native long n_zeros(double size_width, double size_height, int type); // native support for java finalize() private static native void n_delete(long nativeObj); private static native int nPutD(long self, int row, int col, int count, double[] data); private static native int nPutF(long self, int row, int col, int count, float[] data); private static native int nPutI(long self, int row, int col, int count, int[] data); private static native int nPutS(long self, int row, int col, int count, short[] data); private static native int nPutB(long self, int row, int col, int count, byte[] data); private static native int nGetB(long self, int row, int col, int count, byte[] vals); private static native int nGetS(long self, int row, int col, int count, short[] vals); private static native int nGetI(long self, int row, int col, int count, int[] vals); private static native int nGetF(long self, int row, int col, int count, float[] vals); private static native int nGetD(long self, int row, int col, int count, double[] vals); private static native double[] nGet(long self, int row, int col); private static native String nDump(long self); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy