
srcnativelibs.Include.OpenCV.opencv2.flann.flann.hpp Maven / Gradle / Ivy
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef _OPENCV_FLANN_HPP_
#define _OPENCV_FLANN_HPP_
#ifdef __cplusplus
#include "opencv2/core/types_c.h"
#include "opencv2/core/core.hpp"
#include "opencv2/flann/flann_base.hpp"
#include "opencv2/flann/miniflann.hpp"
namespace cvflann
{
CV_EXPORTS flann_distance_t flann_distance_type();
FLANN_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
}
namespace cv
{
namespace flann
{
template struct CvType {};
template <> struct CvType { static int type() { return CV_8U; } };
template <> struct CvType { static int type() { return CV_8S; } };
template <> struct CvType { static int type() { return CV_16U; } };
template <> struct CvType { static int type() { return CV_16S; } };
template <> struct CvType { static int type() { return CV_32S; } };
template <> struct CvType { static int type() { return CV_32F; } };
template <> struct CvType { static int type() { return CV_64F; } };
// bring the flann parameters into this namespace
using ::cvflann::get_param;
using ::cvflann::print_params;
// bring the flann distances into this namespace
using ::cvflann::L2_Simple;
using ::cvflann::L2;
using ::cvflann::L1;
using ::cvflann::MinkowskiDistance;
using ::cvflann::MaxDistance;
using ::cvflann::HammingLUT;
using ::cvflann::Hamming;
using ::cvflann::Hamming2;
using ::cvflann::HistIntersectionDistance;
using ::cvflann::HellingerDistance;
using ::cvflann::ChiSquareDistance;
using ::cvflann::KL_Divergence;
template
class GenericIndex
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance());
~GenericIndex();
void knnSearch(const vector& query, vector& indices,
vector& dists, int knn, const ::cvflann::SearchParams& params);
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
int radiusSearch(const vector& query, vector& indices,
vector& dists, DistanceType radius, const ::cvflann::SearchParams& params);
int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
DistanceType radius, const ::cvflann::SearchParams& params);
void save(std::string filename) { nnIndex->save(filename); }
int veclen() const { return nnIndex->veclen(); }
int size() const { return nnIndex->size(); }
::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); }
FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
private:
::cvflann::Index* nnIndex;
};
#define FLANN_DISTANCE_CHECK \
if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \
printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
"the distance using cvflann::set_distance_type. This is no longer working as expected "\
"(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
"for example for L1 distance use: GenericIndex< L1 > \n"); \
}
template
GenericIndex::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance)
{
CV_Assert(dataset.type() == CvType::type());
CV_Assert(dataset.isContinuous());
::cvflann::Matrix m_dataset((ElementType*)dataset.ptr(0), dataset.rows, dataset.cols);
nnIndex = new ::cvflann::Index(m_dataset, params, distance);
FLANN_DISTANCE_CHECK
nnIndex->buildIndex();
}
template
GenericIndex::~GenericIndex()
{
delete nnIndex;
}
template
void GenericIndex::knnSearch(const vector& query, vector& indices, vector& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix m_dists(&dists[0], 1, dists.size());
FLANN_DISTANCE_CHECK
nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
}
template
void GenericIndex::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(queries.type() == CvType::type());
CV_Assert(queries.isContinuous());
::cvflann::Matrix m_queries((ElementType*)queries.ptr(0), queries.rows, queries.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix m_indices((int*)indices.ptr(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix m_dists((DistanceType*)dists.ptr(0), dists.rows, dists.cols);
FLANN_DISTANCE_CHECK
nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
}
template
int GenericIndex::radiusSearch(const vector& query, vector& indices, vector& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix m_dists(&dists[0], 1, dists.size());
FLANN_DISTANCE_CHECK
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
template
int GenericIndex::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(query.type() == CvType::type());
CV_Assert(query.isContinuous());
::cvflann::Matrix m_query((ElementType*)query.ptr(0), query.rows, query.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix m_indices((int*)indices.ptr(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix m_dists((DistanceType*)dists.ptr(0), dists.rows, dists.cols);
FLANN_DISTANCE_CHECK
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
/**
* @deprecated Use GenericIndex class instead
*/
template
class
#ifndef _MSC_VER
FLANN_DEPRECATED
#endif
Index_ {
public:
typedef typename L2::ElementType ElementType;
typedef typename L2::ResultType DistanceType;
Index_(const Mat& features, const ::cvflann::IndexParams& params);
~Index_();
void knnSearch(const vector& query, vector& indices, vector& dists, int knn, const ::cvflann::SearchParams& params);
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
int radiusSearch(const vector& query, vector& indices, vector& dists, DistanceType radius, const ::cvflann::SearchParams& params);
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& params);
void save(std::string filename)
{
if (nnIndex_L1) nnIndex_L1->save(filename);
if (nnIndex_L2) nnIndex_L2->save(filename);
}
int veclen() const
{
if (nnIndex_L1) return nnIndex_L1->veclen();
if (nnIndex_L2) return nnIndex_L2->veclen();
}
int size() const
{
if (nnIndex_L1) return nnIndex_L1->size();
if (nnIndex_L2) return nnIndex_L2->size();
}
::cvflann::IndexParams getParameters()
{
if (nnIndex_L1) return nnIndex_L1->getParameters();
if (nnIndex_L2) return nnIndex_L2->getParameters();
}
FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
{
if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
}
private:
// providing backwards compatibility for L2 and L1 distances (most common)
::cvflann::Index< L2 >* nnIndex_L2;
::cvflann::Index< L1 >* nnIndex_L1;
};
#ifdef _MSC_VER
template
class FLANN_DEPRECATED Index_;
#endif
template
Index_::Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
{
printf("[WARNING] The cv::flann::Index_ class is deperecated, use cv::flann::GenericIndex instead\n");
CV_Assert(dataset.type() == CvType::type());
CV_Assert(dataset.isContinuous());
::cvflann::Matrix m_dataset((ElementType*)dataset.ptr(0), dataset.rows, dataset.cols);
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
nnIndex_L1 = NULL;
nnIndex_L2 = new ::cvflann::Index< L2 >(m_dataset, params);
}
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
nnIndex_L1 = new ::cvflann::Index< L1 >(m_dataset, params);
nnIndex_L2 = NULL;
}
else {
printf("[ERROR] cv::flann::Index_ only provides backwards compatibility for the L1 and L2 distances. "
"For other distance types you must use cv::flann::GenericIndex\n");
CV_Assert(0);
}
if (nnIndex_L1) nnIndex_L1->buildIndex();
if (nnIndex_L2) nnIndex_L2->buildIndex();
}
template
Index_::~Index_()
{
if (nnIndex_L1) delete nnIndex_L1;
if (nnIndex_L2) delete nnIndex_L2;
}
template
void Index_::knnSearch(const vector& query, vector& indices, vector& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix m_dists(&dists[0], 1, dists.size());
if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
}
template
void Index_::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(queries.type() == CvType::type());
CV_Assert(queries.isContinuous());
::cvflann::Matrix m_queries((ElementType*)queries.ptr(0), queries.rows, queries.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix m_indices((int*)indices.ptr(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix m_dists((DistanceType*)dists.ptr(0), dists.rows, dists.cols);
if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
}
template
int Index_::radiusSearch(const vector& query, vector& indices, vector& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix m_dists(&dists[0], 1, dists.size());
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
template
int Index_::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(query.type() == CvType::type());
CV_Assert(query.isContinuous());
::cvflann::Matrix m_query((ElementType*)query.ptr(0), query.rows, query.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix m_indices((int*)indices.ptr(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix m_dists((DistanceType*)dists.ptr(0), dists.rows, dists.cols);
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
template
int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params,
Distance d = Distance())
{
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
CV_Assert(features.type() == CvType::type());
CV_Assert(features.isContinuous());
::cvflann::Matrix m_features((ElementType*)features.ptr(0), features.rows, features.cols);
CV_Assert(centers.type() == CvType::type());
CV_Assert(centers.isContinuous());
::cvflann::Matrix m_centers((DistanceType*)centers.ptr(0), centers.rows, centers.cols);
return ::cvflann::hierarchicalClustering(m_features, m_centers, params, d);
}
template
FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
{
printf("[WARNING] cv::flann::hierarchicalClustering is deprecated, use "
"cv::flann::hierarchicalClustering instead\n");
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
return hierarchicalClustering< L2 >(features, centers, params);
}
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
return hierarchicalClustering< L1 >(features, centers, params);
}
else {
printf("[ERROR] cv::flann::hierarchicalClustering only provides backwards "
"compatibility for the L1 and L2 distances. "
"For other distance types you must use cv::flann::hierarchicalClustering\n");
CV_Assert(0);
}
}
} } // namespace cv::flann
#endif // __cplusplus
#endif
© 2015 - 2025 Weber Informatics LLC | Privacy Policy