Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
srcnativelibs.Include.OpenCV.opencv2.flann.hierarchical_clustering_index.h Maven / Gradle / Ivy
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2011 Marius Muja ([email protected] ). All rights reserved.
* Copyright 2008-2011 David G. Lowe ([email protected] ). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
#include
#include
#include
#include
#include
#include
#include "general.h"
#include "nn_index.h"
#include "dist.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"
namespace cvflann
{
struct HierarchicalClusteringIndexParams : public IndexParams
{
HierarchicalClusteringIndexParams(int branching = 32,
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
int trees = 4, int leaf_size = 100)
{
(*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
// The branching factor used in the hierarchical clustering
(*this)["branching"] = branching;
// Algorithm used for picking the initial cluster centers
(*this)["centers_init"] = centers_init;
// number of parallel trees to build
(*this)["trees"] = trees;
// maximum leaf size
(*this)["leaf_size"] = leaf_size;
}
};
/**
* Hierarchical index
*
* Contains a tree constructed through a hierarchical clustering
* and other information for indexing a set of points for nearest-neighbour matching.
*/
template
class HierarchicalClusteringIndex : public NNIndex
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
private:
typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
/**
* The function used for choosing the cluster centers.
*/
centersAlgFunction chooseCenters;
/**
* Chooses the initial centers in the k-means clustering in a random manner.
*
* Params:
* k = number of centers
* vecs = the dataset of points
* indices = indices in the dataset
* indices_length = length of indices vector
*
*/
void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
{
UniqueRandom r(indices_length);
int index;
for (index=0; index=0 && rnd < n);
centers[0] = dsindices[rnd];
int index;
for (index=1; indexbest_val) {
best_val = dist;
best_index = j;
}
}
if (best_index!=-1) {
centers[index] = dsindices[best_index];
}
else {
break;
}
}
centers_length = index;
}
/**
* Chooses the initial centers in the k-means using the algorithm
* proposed in the KMeans++ paper:
* Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
*
* Implementation of this function was converted from the one provided in Arthur's code.
*
* Params:
* k = number of centers
* vecs = the dataset of points
* indices = indices in the dataset
* Returns:
*/
void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
{
int n = indices_length;
double currentPot = 0;
DistanceType* closestDistSq = new DistanceType[n];
// Choose one random center and set the closestDistSq values
int index = rand_int(n);
assert(index >=0 && index < n);
centers[0] = dsindices[index];
for (int i = 0; i < n; i++) {
closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
currentPot += closestDistSq[i];
}
const int numLocalTries = 1;
// Choose each center
int centerCount;
for (centerCount = 1; centerCount < k; centerCount++) {
// Repeat several trials
double bestNewPot = -1;
int bestNewIndex = 0;
for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
// Choose our center - have to be slightly careful to return a valid answer even accounting
// for possible rounding errors
double randVal = rand_double(currentPot);
for (index = 0; index < n-1; index++) {
if (randVal <= closestDistSq[index]) break;
else randVal -= closestDistSq[index];
}
// Compute the new potential
double newPot = 0;
for (int i = 0; i < n; i++) newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols), closestDistSq[i] );
// Store the best result
if ((bestNewPot < 0)||(newPot < bestNewPot)) {
bestNewPot = newPot;
bestNewIndex = index;
}
}
// Add the appropriate center
centers[centerCount] = dsindices[bestNewIndex];
currentPot = bestNewPot;
for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols), closestDistSq[i] );
}
centers_length = centerCount;
delete[] closestDistSq;
}
public:
/**
* Index constructor
*
* Params:
* inputData = dataset with the input features
* params = parameters passed to the hierarchical k-means algorithm
*/
HierarchicalClusteringIndex(const Matrix& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
Distance d = Distance())
: dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
{
memoryCounter = 0;
size_ = dataset.rows;
veclen_ = dataset.cols;
branching_ = get_param(params,"branching",32);
centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
trees_ = get_param(params,"trees",4);
leaf_size_ = get_param(params,"leaf_size",100);
if (centers_init_==FLANN_CENTERS_RANDOM) {
chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
}
else if (centers_init_==FLANN_CENTERS_GONZALES) {
chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
}
else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
}
else {
throw FLANNException("Unknown algorithm for choosing initial centers.");
}
trees_ = get_param(params,"trees",4);
root = new NodePtr[trees_];
indices = new int*[trees_];
for (int i=0; i();
computeClustering(root[i], indices[i], (int)size_, branching_,0);
}
}
flann_algorithm_t getType() const
{
return FLANN_INDEX_HIERARCHICAL;
}
void saveIndex(FILE* stream)
{
save_value(stream, branching_);
save_value(stream, trees_);
save_value(stream, centers_init_);
save_value(stream, leaf_size_);
save_value(stream, memoryCounter);
for (int i=0; i& result, const ElementType* vec, const SearchParams& searchParams)
{
int maxChecks = get_param(searchParams,"checks",32);
// Priority queue storing intermediate branches in the best-bin-first search
Heap* heap = new Heap((int)size_);
std::vector checked(size_,false);
int checks = 0;
for (int i=0; ipopMin(branch) && (checks BranchSt;
void save_tree(FILE* stream, NodePtr node, int num)
{
save_value(stream, *node);
if (node->childs==NULL) {
int indices_offset = (int)(node->indices - indices[num]);
save_value(stream, indices_offset);
}
else {
for(int i=0; ichilds[i], num);
}
}
}
void load_tree(FILE* stream, NodePtr& node, int num)
{
node = pool.allocate();
load_value(stream, *node);
if (node->childs==NULL) {
int indices_offset;
load_value(stream, indices_offset);
node->indices = indices[num] + indices_offset;
}
else {
node->childs = pool.allocate(branching_);
for(int i=0; ichilds[i], num);
}
}
}
void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost)
{
cost = 0;
for (int i=0; inew_dist) {
labels[i] = j;
dist = new_dist;
}
}
cost += dist;
}
}
/**
* The method responsible with actually doing the recursive hierarchical
* clustering
*
* Params:
* node = the node to cluster
* indices = indices of the points belonging to the current node
* branching = the branching factor to use in the clustering
*
* TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
*/
void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
{
node->size = indices_length;
node->level = level;
if (indices_length < leaf_size_) { // leaf node
node->indices = dsindices;
std::sort(node->indices,node->indices+indices_length);
node->childs = NULL;
return;
}
std::vector centers(branching);
std::vector labels(indices_length);
int centers_length;
(this->*chooseCenters)(branching, dsindices, indices_length, ¢ers[0], centers_length);
if (centers_lengthindices = dsindices;
std::sort(node->indices,node->indices+indices_length);
node->childs = NULL;
return;
}
// assign points to clusters
DistanceType cost;
computeLabels(dsindices, indices_length, ¢ers[0], centers_length, &labels[0], cost);
node->childs = pool.allocate(branching);
int start = 0;
int end = start;
for (int i=0; ichilds[i] = pool.allocate();
node->childs[i]->pivot = centers[i];
node->childs[i]->indices = NULL;
computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
start=end;
}
}
/**
* Performs one descent in the hierarchical k-means tree. The branches not
* visited are stored in a priority queue.
*
* Params:
* node = node to explore
* result = container for the k-nearest neighbors found
* vec = query points
* checks = how many points in the dataset have been checked so far
* maxChecks = maximum dataset points to checks
*/
void findNN(NodePtr node, ResultSet& result, const ElementType* vec, int& checks, int maxChecks,
Heap* heap, std::vector& checked)
{
if (node->childs==NULL) {
if (checks>=maxChecks) {
if (result.full()) return;
}
for (int i=0; isize; ++i) {
int index = node->indices[i];
if (!checked[index]) {
DistanceType dist = distance(dataset[index], vec, veclen_);
result.addPoint(dist, index);
checked[index] = true;
++checks;
}
}
}
else {
DistanceType* domain_distances = new DistanceType[branching_];
int best_index = 0;
domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
for (int i=1; ichilds[i]->pivot], veclen_);
if (domain_distances[i]insert(BranchSt(node->childs[i],domain_distances[i]));
}
}
delete[] domain_distances;
findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
}
}
private:
/**
* The dataset used by this index
*/
const Matrix dataset;
/**
* Parameters used by this index
*/
IndexParams params;
/**
* Number of features in the dataset.
*/
size_t size_;
/**
* Length of each feature.
*/
size_t veclen_;
/**
* The root node in the tree.
*/
NodePtr* root;
/**
* Array of indices to vectors in the dataset.
*/
int** indices;
/**
* The distance
*/
Distance distance;
/**
* Pooled memory allocator.
*
* Using a pooled memory allocator is more efficient
* than allocating memory directly when there is a large
* number small of memory allocations.
*/
PooledAllocator pool;
/**
* Memory occupied by the index.
*/
int memoryCounter;
/** index parameters */
int branching_;
int trees_;
flann_centers_init_t centers_init_;
int leaf_size_;
};
}
#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */