
srcnativelibs.Include.OpenCV.opencv2.flann.index_testing.h Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sikulixlibslux Show documentation
Show all versions of sikulixlibslux Show documentation
... for visual testing and automation (Linux native support)
The newest version!
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja ([email protected]). All rights reserved.
* Copyright 2008-2009 David G. Lowe ([email protected]). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_INDEX_TESTING_H_
#define OPENCV_FLANN_INDEX_TESTING_H_
#include
#include
#include
#include "matrix.h"
#include "nn_index.h"
#include "result_set.h"
#include "logger.h"
#include "timer.h"
namespace cvflann
{
inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
{
int count = 0;
for (int i=0; i
typename Distance::ResultType computeDistanceRaport(const Matrix& inputData, typename Distance::ElementType* target,
int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
{
typedef typename Distance::ResultType DistanceType;
DistanceType ret = 0;
for (int i=0; i
float search_with_ground_truth(NNIndex& index, const Matrix& inputData,
const Matrix& testData, const Matrix& matches, int nn, int checks,
float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
{
typedef typename Distance::ResultType DistanceType;
if (matches.cols resultSet(nn+skipMatches);
SearchParams searchParams(checks);
std::vector indices(nn+skipMatches);
std::vector dists(nn+skipMatches);
int* neighbors = &indices[skipMatches];
int correct = 0;
DistanceType distR = 0;
StartStopTimer t;
int repeats = 0;
while (t.value<0.2) {
repeats++;
t.start();
correct = 0;
distR = 0;
for (size_t i = 0; i < testData.rows; i++) {
resultSet.init(&indices[0], &dists[0]);
index.findNeighbors(resultSet, testData[i], searchParams);
correct += countCorrectMatches(neighbors,matches[i], nn);
distR += computeDistanceRaport(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);
}
t.stop();
}
time = float(t.value/repeats);
float precicion = (float)correct/(nn*testData.rows);
dist = distR/(testData.rows*nn);
Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
checks, precicion, time, 1000.0 * time / testData.rows, dist);
return precicion;
}
template
float test_index_checks(NNIndex& index, const Matrix& inputData,
const Matrix& testData, const Matrix& matches,
int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
{
typedef typename Distance::ResultType DistanceType;
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
Logger::info("---------------------------------------------------------\n");
float time = 0;
DistanceType dist = 0;
precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
return time;
}
template
float test_index_precision(NNIndex& index, const Matrix& inputData,
const Matrix& testData, const Matrix& matches,
float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
{
typedef typename Distance::ResultType DistanceType;
const float SEARCH_EPS = 0.001f;
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
Logger::info("---------------------------------------------------------\n");
int c2 = 1;
float p2;
int c1 = 1;
//float p1;
float time;
DistanceType dist;
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
if (p2>precision) {
Logger::info("Got as close as I can\n");
checks = c2;
return time;
}
while (p2SEARCH_EPS) {
Logger::info("Start linear estimation\n");
// after we got to values in the vecinity of the desired precision
// use linear approximation get a better estimation
cx = (c1+c2)/2;
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
while (fabs(realPrecision-precision)>SEARCH_EPS) {
if (realPrecision
void test_index_precisions(NNIndex& index, const Matrix& inputData,
const Matrix& testData, const Matrix& matches,
float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
{
typedef typename Distance::ResultType DistanceType;
const float SEARCH_EPS = 0.001;
// make sure precisions array is sorted
std::sort(precisions, precisions+precisions_length);
int pindex = 0;
float precision = precisions[pindex];
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
Logger::info("---------------------------------------------------------\n");
int c2 = 1;
float p2;
int c1 = 1;
float p1;
float time;
DistanceType dist;
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
// if precision for 1 run down the tree is already
// better then some of the requested precisions, then
// skip those
while (precisions[pindex] 0)&&(time > maxTime)&&(p2SEARCH_EPS) {
Logger::info("Start linear estimation\n");
// after we got to values in the vecinity of the desired precision
// use linear approximation get a better estimation
cx = (c1+c2)/2;
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
while (fabs(realPrecision-precision)>SEARCH_EPS) {
if (realPrecision
© 2015 - 2025 Weber Informatics LLC | Privacy Policy