
srcnativelibs.Include.OpenCV.opencv2.gpu.device.detail.reduce.hpp Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sikulixlibslux Show documentation
Show all versions of sikulixlibslux Show documentation
... for visual testing and automation (Linux native support)
The newest version!
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_REDUCE_DETAIL_HPP__
#define __OPENCV_GPU_REDUCE_DETAIL_HPP__
#include
#include "../warp.hpp"
#include "../warp_shuffle.hpp"
namespace cv { namespace gpu { namespace device
{
namespace reduce_detail
{
template struct GetType;
template struct GetType
{
typedef T type;
};
template struct GetType
{
typedef T type;
};
template struct GetType
{
typedef T type;
};
template
struct For
{
template
static __device__ void loadToSmem(const PointerTuple& smem, const ValTuple& val, unsigned int tid)
{
thrust::get(smem)[tid] = thrust::get(val);
For::loadToSmem(smem, val, tid);
}
template
static __device__ void loadFromSmem(const PointerTuple& smem, const ValTuple& val, unsigned int tid)
{
thrust::get(val) = thrust::get(smem)[tid];
For::loadFromSmem(smem, val, tid);
}
template
static __device__ void merge(const PointerTuple& smem, const ValTuple& val, unsigned int tid, unsigned int delta, const OpTuple& op)
{
typename GetType::type>::type reg = thrust::get(smem)[tid + delta];
thrust::get(smem)[tid] = thrust::get(val) = thrust::get(op)(thrust::get(val), reg);
For::merge(smem, val, tid, delta, op);
}
template
static __device__ void mergeShfl(const ValTuple& val, unsigned int delta, unsigned int width, const OpTuple& op)
{
typename GetType::type>::type reg = shfl_down(thrust::get(val), delta, width);
thrust::get(val) = thrust::get(op)(thrust::get(val), reg);
For::mergeShfl(val, delta, width, op);
}
};
template
struct For
{
template
static __device__ void loadToSmem(const PointerTuple&, const ValTuple&, unsigned int)
{
}
template
static __device__ void loadFromSmem(const PointerTuple&, const ValTuple&, unsigned int)
{
}
template
static __device__ void merge(const PointerTuple&, const ValTuple&, unsigned int, unsigned int, const OpTuple&)
{
}
template
static __device__ void mergeShfl(const ValTuple&, unsigned int, unsigned int, const OpTuple&)
{
}
};
template
__device__ __forceinline__ void loadToSmem(volatile T* smem, T& val, unsigned int tid)
{
smem[tid] = val;
}
template
__device__ __forceinline__ void loadFromSmem(volatile T* smem, T& val, unsigned int tid)
{
val = smem[tid];
}
template
__device__ __forceinline__ void loadToSmem(const thrust::tuple& smem,
const thrust::tuple& val,
unsigned int tid)
{
For<0, thrust::tuple_size >::value>::loadToSmem(smem, val, tid);
}
template
__device__ __forceinline__ void loadFromSmem(const thrust::tuple& smem,
const thrust::tuple& val,
unsigned int tid)
{
For<0, thrust::tuple_size >::value>::loadFromSmem(smem, val, tid);
}
template
__device__ __forceinline__ void merge(volatile T* smem, T& val, unsigned int tid, unsigned int delta, const Op& op)
{
T reg = smem[tid + delta];
smem[tid] = val = op(val, reg);
}
template
__device__ __forceinline__ void mergeShfl(T& val, unsigned int delta, unsigned int width, const Op& op)
{
T reg = shfl_down(val, delta, width);
val = op(val, reg);
}
template
__device__ __forceinline__ void merge(const thrust::tuple& smem,
const thrust::tuple& val,
unsigned int tid,
unsigned int delta,
const thrust::tuple& op)
{
For<0, thrust::tuple_size >::value>::merge(smem, val, tid, delta, op);
}
template
__device__ __forceinline__ void mergeShfl(const thrust::tuple& val,
unsigned int delta,
unsigned int width,
const thrust::tuple& op)
{
For<0, thrust::tuple_size >::value>::mergeShfl(val, delta, width, op);
}
template struct Generic
{
template
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
loadToSmem(smem, val, tid);
if (N >= 32)
__syncthreads();
if (N >= 2048)
{
if (tid < 1024)
merge(smem, val, tid, 1024, op);
__syncthreads();
}
if (N >= 1024)
{
if (tid < 512)
merge(smem, val, tid, 512, op);
__syncthreads();
}
if (N >= 512)
{
if (tid < 256)
merge(smem, val, tid, 256, op);
__syncthreads();
}
if (N >= 256)
{
if (tid < 128)
merge(smem, val, tid, 128, op);
__syncthreads();
}
if (N >= 128)
{
if (tid < 64)
merge(smem, val, tid, 64, op);
__syncthreads();
}
if (N >= 64)
{
if (tid < 32)
merge(smem, val, tid, 32, op);
}
if (tid < 16)
{
merge(smem, val, tid, 16, op);
merge(smem, val, tid, 8, op);
merge(smem, val, tid, 4, op);
merge(smem, val, tid, 2, op);
merge(smem, val, tid, 1, op);
}
}
};
template
struct Unroll
{
static __device__ void loopShfl(Reference val, Op op, unsigned int N)
{
mergeShfl(val, I, N, op);
Unroll::loopShfl(val, op, N);
}
static __device__ void loop(Pointer smem, Reference val, unsigned int tid, Op op)
{
merge(smem, val, tid, I, op);
Unroll::loop(smem, val, tid, op);
}
};
template
struct Unroll<0, Pointer, Reference, Op>
{
static __device__ void loopShfl(Reference, Op, unsigned int)
{
}
static __device__ void loop(Pointer, Reference, unsigned int, Op)
{
}
};
template struct WarpOptimized
{
template
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
#if __CUDA_ARCH__ >= 300
(void) smem;
(void) tid;
Unroll::loopShfl(val, op, N);
#else
loadToSmem(smem, val, tid);
if (tid < N / 2)
Unroll::loop(smem, val, tid, op);
#endif
}
};
template struct GenericOptimized32
{
enum { M = N / 32 };
template
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
const unsigned int laneId = Warp::laneId();
#if __CUDA_ARCH__ >= 300
Unroll<16, Pointer, Reference, Op>::loopShfl(val, op, warpSize);
if (laneId == 0)
loadToSmem(smem, val, tid / 32);
#else
loadToSmem(smem, val, tid);
if (laneId < 16)
Unroll<16, Pointer, Reference, Op>::loop(smem, val, tid, op);
__syncthreads();
if (laneId == 0)
loadToSmem(smem, val, tid / 32);
#endif
__syncthreads();
loadFromSmem(smem, val, tid);
if (tid < 32)
{
#if __CUDA_ARCH__ >= 300
Unroll::loopShfl(val, op, M);
#else
Unroll::loop(smem, val, tid, op);
#endif
}
}
};
template struct StaticIf;
template struct StaticIf
{
typedef T1 type;
};
template struct StaticIf
{
typedef T2 type;
};
template struct IsPowerOf2
{
enum { value = ((N != 0) && !(N & (N - 1))) };
};
template struct Dispatcher
{
typedef typename StaticIf<
(N <= 32) && IsPowerOf2::value,
WarpOptimized,
typename StaticIf<
(N <= 1024) && IsPowerOf2::value,
GenericOptimized32,
Generic
>::type
>::type reductor;
};
}
}}}
#endif // __OPENCV_GPU_REDUCE_DETAIL_HPP__
© 2015 - 2025 Weber Informatics LLC | Privacy Policy