All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.simiacryptus.diff.DiffMatchPatch.kt Maven / Gradle / Ivy

There is a newer version: 1.2.21
Show newest version
package com.simiacryptus.diff

import java.io.UnsupportedEncodingException
import java.net.URLDecoder
import java.net.URLEncoder
import java.util.*
import java.util.regex.Matcher
import java.util.regex.Pattern
import kotlin.math.abs
import kotlin.math.max
import kotlin.math.min

/*
* Functions for diff, match and patch.
* Computes the difference between two texts to create a patch.
* Applies the patch onto another text, allowing for errors.
*
* @author [email protected] (Neil Fraser)
*/
/**
 * Class containing the diff, match and patch methods.
 * Also contains the behaviour settings.
 */
open class DiffMatchPatch {
    // Defaults.
    // Set these on your diff_match_patch instance to override the defaults.
    /**
     * Number of seconds to map a diff before giving up (0 for infinity).
     */
    var Diff_Timeout: Float = 1.0f

    /**
     * Cost of an empty edit operation in terms of edit characters.
     */
    private var Diff_EditCost: Short = 4

    /**
     * At what point is no match declared (0.0 = perfection, 1.0 = very loose).
     */
    private var Match_Threshold: Float = 0.5f

    /**
     * How far to search for a match (0 = exact location, 1000+ = broad match).
     * A match this many characters away from the expected location will add
     * 1.0 to the score (0.0 is a perfect match).
     */
    private var Match_Distance: Int = 1000

    /**
     * When deleting a large block of text (over ~64 characters), how close do
     * the contents have to be to match the expected contents. (0.0 = perfection,
     * 1.0 = very loose).  Note that Match_Threshold controls how closely the
     * end points of a delete need to match.
     */
    private var Patch_DeleteThreshold: Float = 0.5f

    /**
     * Chunk size for context length.
     */
    private var Patch_Margin: Short = 4

    /**
     * The number of bits in an int.
     */
    private val Match_MaxBits: Short = 32

    /**
     * Internal class for returning results from diff_linesToChars().
     * Other less paranoid languages just use a three-element array.
     */
    protected class LinesToCharsResult(
        var chars1: String, var chars2: String,
        var lineArray: List
    )


    //  DIFF FUNCTIONS
    /**
     * The data structure representing a diff is a Linked list of Diff objects:
     * {Diff(Operation.DELETE, "Hello"), Diff(Operation.INSERT, "Goodbye"),
     * Diff(Operation.EQUAL, " world.")}
     * which means: delete "Hello", add "Goodbye" and keep " world."
     */
    enum class Operation {
        DELETE, INSERT, EQUAL
    }

    /**
     * Find the differences between two texts.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @param checklines Speedup flag.  If false, then don't run a
     * line-level diff first to identify the changed areas.
     * If true, then run a faster slightly less optimal diff.
     * @return Linked List of Diff objects.
     */
    /**
     * Find the differences between two texts.
     * Run a faster, slightly less optimal diff.
     * This method allows the 'checklines' of diff_main() to be optional.
     * Most of the time checklines is wanted, so default to true.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @return Linked List of Diff objects.
     */
    @JvmOverloads
    fun diff_main(text1: String?, text2: String?, checklines: Boolean = true): LinkedList {
        // Set a deadline by which time the diff must be complete.
        val deadline: Long
        if (Diff_Timeout <= 0) {
            deadline = Long.MAX_VALUE
        } else {
            deadline = System.currentTimeMillis() + (Diff_Timeout * 1000).toLong()
        }
        return diff_main(text1, text2, checklines, deadline)
    }

    /**
     * Find the differences between two texts.  Simplifies the problem by
     * stripping any common prefix or suffix off the texts before diffing.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @param checklines Speedup flag.  If false, then don't run a
     * line-level diff first to identify the changed areas.
     * If true, then run a faster slightly less optimal diff.
     * @param deadline Time when the diff should be complete by.  Used
     * internally for recursive calls.  Users should set DiffTimeout instead.
     * @return Linked List of Diff objects.
     */
    fun diff_main(text1: String?, text2: String?, checklines: Boolean, deadline: Long): LinkedList {
        // Check for null inputs.
        var text1 = text1
        var text2 = text2
        if (text1 == null || text2 == null) {
            throw IllegalArgumentException("Null inputs. (diff_main)")
        }

        // Check for equality (speedup).
        val diffs: LinkedList
        if (text1 == text2) {
            diffs = LinkedList()
            if (text1.length != 0) {
                diffs.add(Diff(Operation.EQUAL, text1))
            }
            return diffs
        }

        // Trim off common prefix (speedup).
        var commonlength = diff_commonPrefix(text1, text2)
        val commonprefix = text1.substring(0, commonlength)
        text1 = text1.substring(commonlength)
        text2 = text2.substring(commonlength)

        // Trim off common suffix (speedup).
        commonlength = diff_commonSuffix(text1, text2)
        val commonsuffix = text1.substring(text1.length - commonlength)
        text1 = text1.substring(0, text1.length - commonlength)
        text2 = text2.substring(0, text2.length - commonlength)

        // Compute the diff on the middle block.
        diffs = diff_compute(text1, text2, checklines, deadline)

        // Restore the prefix and suffix.
        if (commonprefix.length != 0) {
            diffs.addFirst(Diff(Operation.EQUAL, commonprefix))
        }
        if (commonsuffix.length != 0) {
            diffs.addLast(Diff(Operation.EQUAL, commonsuffix))
        }

        diff_cleanupMerge(diffs)
        return diffs
    }

    /**
     * Find the differences between two texts.  Assumes that the texts do not
     * have any common prefix or suffix.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @param checklines Speedup flag.  If false, then don't run a
     * line-level diff first to identify the changed areas.
     * If true, then run a faster slightly less optimal diff.
     * @param deadline Time when the diff should be complete by.
     * @return Linked List of Diff objects.
     */
    private fun diff_compute(text1: String, text2: String, checklines: Boolean, deadline: Long): LinkedList {
        var diffs = LinkedList()

        if (text1.length == 0) {
            // Just add some text (speedup).
            diffs.add(Diff(Operation.INSERT, text2))
            return diffs
        }

        if (text2.length == 0) {
            // Just delete some text (speedup).
            diffs.add(Diff(Operation.DELETE, text1))
            return diffs
        }

        val longtext = if (text1.length > text2.length) text1 else text2
        val shorttext = if (text1.length > text2.length) text2 else text1
        val i = longtext.indexOf(shorttext)
        if (i != -1) {
            // Shorter text is inside the longer text (speedup).
            val op = if ((text1.length > text2.length)) Operation.DELETE else Operation.INSERT
            diffs.add(Diff(op, longtext.substring(0, i)))
            diffs.add(Diff(Operation.EQUAL, shorttext))
            diffs.add(Diff(op, longtext.substring(i + shorttext.length)))
            return diffs
        }

        if (shorttext.length == 1) {
            // Single character string.
            // After the previous speedup, the character can't be an equality.
            diffs.add(Diff(Operation.DELETE, text1))
            diffs.add(Diff(Operation.INSERT, text2))
            return diffs
        }

        // Check to see if the problem can be split in two.
        val hm = diff_halfMatch(text1, text2)
        if (hm != null) {
            // A half-match was found, sort out the return data.
            val text1_a = hm[0]
            val text1_b = hm[1]
            val text2_a = hm[2]
            val text2_b = hm[3]
            val mid_common = hm[4]
            // Send both pairs off for separate processing.
            val diffs_a = diff_main(
                text1_a, text2_a,
                checklines, deadline
            )
            val diffs_b = diff_main(
                text1_b, text2_b,
                checklines, deadline
            )
            // Merge the results.
            diffs = diffs_a
            diffs.add(Diff(Operation.EQUAL, mid_common))
            diffs.addAll(diffs_b)
            return diffs
        }

        if ((checklines && text1.length > 100) && text2.length > 100) {
            return diff_lineMode(text1, text2, deadline)
        }

        return diff_bisect(text1, text2, deadline)
    }

    /**
     * Do a quick line-level diff on both strings, then rediff the parts for
     * greater accuracy.
     * This speedup can produce non-minimal diffs.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @param deadline Time when the diff should be complete by.
     * @return Linked List of Diff objects.
     */
    private fun diff_lineMode(
        text1: String, text2: String,
        deadline: Long
    ): LinkedList {
        // Scan the text on a line-by-line basis first.
        var text1 = text1
        var text2 = text2
        val a = diff_linesToChars(text1, text2)
        text1 = a.chars1
        text2 = a.chars2
        val linearray = a.lineArray

        val diffs = diff_main(text1, text2, false, deadline)

        // Convert the diff back to original text.
        diff_charsToLines(diffs, linearray)
        // Eliminate freak matches (e.g. blank lines)
        diff_cleanupSemantic(diffs)

        // Rediff any replacement blocks, this time character-by-character.
        // Add a dummy entry at the end.
        diffs.add(Diff(Operation.EQUAL, ""))
        var count_delete = 0
        var count_insert = 0
        var text_delete: String = ""
        var text_insert: String = ""
        val pointer = diffs.listIterator()
        var thisDiff: Diff? = pointer.next()
        while (thisDiff != null) {
            when (thisDiff.operation) {
                Operation.INSERT -> {
                    count_insert++
                    text_insert += thisDiff.text
                }

                Operation.DELETE -> {
                    count_delete++
                    text_delete += thisDiff.text
                }

                Operation.EQUAL -> {
                    // Upon reaching an equality, check for prior redundancies.
                    if (count_delete >= 1 && count_insert >= 1) {
                        // Delete the offending records and add the merged ones.
                        pointer.previous()
                        var j = 0
                        while (j < count_delete + count_insert) {
                            pointer.previous()
                            pointer.remove()
                            j++
                        }
                        for (subDiff: Diff in diff_main(
                            text_delete, text_insert, false,
                            deadline
                        )) {
                            pointer.add(subDiff)
                        }
                    }
                    count_insert = 0
                    count_delete = 0
                    text_delete = ""
                    text_insert = ""
                }

                null -> TODO()
            }
            thisDiff = if (pointer.hasNext()) pointer.next() else null
        }
        diffs.removeLast() // Remove the dummy entry at the end.

        return diffs
    }

    /**
     * Find the 'middle snake' of a diff, split the problem in two
     * and return the recursively constructed diff.
     * See Myers 1986 paper: An O(ND) Difference Algorithm and Its Variations.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @param deadline Time at which to bail if not yet complete.
     * @return LinkedList of Diff objects.
     */
    private fun diff_bisect(
        text1: String, text2: String,
        deadline: Long
    ): LinkedList {
        // Cache the text lengths to prevent multiple calls.
        val text1_length = text1.length
        val text2_length = text2.length
        val max_d = (text1_length + text2_length + 1) / 2
        val v_offset = max_d
        val v_length = 2 * max_d
        val v1 = IntArray(v_length)
        val v2 = IntArray(v_length)
        for (x in 0 until v_length) {
            v1[x] = -1
            v2[x] = -1
        }
        v1[v_offset + 1] = 0
        v2[v_offset + 1] = 0
        val delta = text1_length - text2_length
        // If the total number of characters is odd, then the front path will
        // collide with the reverse path.
        val front = (delta % 2 != 0)
        // Offsets for start and end of k loop.
        // Prevents mapping of space beyond the grid.
        var k1start = 0
        var k1end = 0
        var k2start = 0
        var k2end = 0
        for (d in 0 until max_d) {
            // Bail out if deadline is reached.
            if (System.currentTimeMillis() > deadline) {
                break
            }

            // Walk the front path one step.
            var k1 = -d + k1start
            while (k1 <= d - k1end) {
                val k1_offset = v_offset + k1
                var x1: Int
                if (k1 == -d || (k1 != d && v1[k1_offset - 1] < v1[k1_offset + 1])) {
                    x1 = v1[k1_offset + 1]
                } else {
                    x1 = v1[k1_offset - 1] + 1
                }
                var y1 = x1 - k1
                while ((x1 < text1_length) && y1 < text2_length && text1[x1] == text2[y1]) {
                    x1++
                    y1++
                }
                v1[k1_offset] = x1
                if (x1 > text1_length) {
                    // Ran off the right of the graph.
                    k1end += 2
                } else if (y1 > text2_length) {
                    // Ran off the bottom of the graph.
                    k1start += 2
                } else if (front) {
                    val k2_offset = v_offset + delta - k1
                    if ((k2_offset >= 0 && k2_offset < v_length) && v2[k2_offset] != -1) {
                        // Mirror x2 onto top-left coordinate system.
                        val x2 = text1_length - v2[k2_offset]
                        if (x1 >= x2) {
                            // Overlap detected.
                            return diff_bisectSplit(text1, text2, x1, y1, deadline)
                        }
                    }
                }
                k1 += 2
            }

            // Walk the reverse path one step.
            var k2 = -d + k2start
            while (k2 <= d - k2end) {
                val k2_offset = v_offset + k2
                var x2: Int
                if (k2 == -d || (k2 != d && v2[k2_offset - 1] < v2[k2_offset + 1])) {
                    x2 = v2[k2_offset + 1]
                } else {
                    x2 = v2[k2_offset - 1] + 1
                }
                var y2 = x2 - k2
                while ((x2 < text1_length) && y2 < text2_length && (text1[text1_length - x2 - 1]
                            == text2[text2_length - y2 - 1])
                ) {
                    x2++
                    y2++
                }
                v2[k2_offset] = x2
                if (x2 > text1_length) {
                    // Ran off the left of the graph.
                    k2end += 2
                } else if (y2 > text2_length) {
                    // Ran off the top of the graph.
                    k2start += 2
                } else if (!front) {
                    val k1_offset = v_offset + delta - k2
                    if (((k1_offset >= 0) && k1_offset < v_length) && v1[k1_offset] != -1) {
                        val x1 = v1[k1_offset]
                        val y1 = v_offset + x1 - k1_offset
                        // Mirror x2 onto top-left coordinate system.
                        x2 = text1_length - x2
                        if (x1 >= x2) {
                            // Overlap detected.
                            return diff_bisectSplit(text1, text2, x1, y1, deadline)
                        }
                    }
                }
                k2 += 2
            }
        }
        // Diff took too long and hit the deadline or
        // number of diffs equals number of characters, no commonality at all.
        val diffs = LinkedList()
        diffs.add(Diff(Operation.DELETE, text1))
        diffs.add(Diff(Operation.INSERT, text2))
        return diffs
    }

    /**
     * Given the location of the 'middle snake', split the diff in two parts
     * and recurse.
     * @param text1 Old string to be diffed.
     * @param text2 New string to be diffed.
     * @param x Index of split point in text1.
     * @param y Index of split point in text2.
     * @param deadline Time at which to bail if not yet complete.
     * @return LinkedList of Diff objects.
     */
    private fun diff_bisectSplit(
        text1: String, text2: String,
        x: Int, y: Int, deadline: Long
    ): LinkedList {
        val text1a = text1.substring(0, x)
        val text2a = text2.substring(0, y)
        val text1b = text1.substring(x)
        val text2b = text2.substring(y)

        // Compute both diffs serially.
        val diffs = diff_main(text1a, text2a, false, deadline)
        val diffsb = diff_main(text1b, text2b, false, deadline)

        diffs.addAll(diffsb)
        return diffs
    }

    /**
     * Split two texts into a list of strings.  Reduce the texts to a string of
     * hashes where each Unicode character represents one line.
     * @param text1 First string.
     * @param text2 Second string.
     * @return An object containing the encoded text1, the encoded text2 and
     * the List of unique strings.  The zeroth element of the List of
     * unique strings is intentionally blank.
     */
    private fun diff_linesToChars(text1: String, text2: String): LinesToCharsResult {
        val lineArray: MutableList = ArrayList()
        val lineHash: MutableMap = HashMap()

        // e.g. linearray[4] == "Hello\n"
        // e.g. linehash.get("Hello\n") == 4

        // "\x00" is a valid character, but various debuggers don't like it.
        // So we'll insert a junk entry to avoid generating a null character.
        lineArray.add("")

        // Allocate 2/3rds of the space for text1, the rest for text2.
        val chars1 = diff_linesToCharsMunge(text1, lineArray, lineHash, 40000)
        val chars2 = diff_linesToCharsMunge(text2, lineArray, lineHash, 65535)
        return LinesToCharsResult(chars1, chars2, lineArray)
    }

    /**
     * Split a text into a list of strings.  Reduce the texts to a string of
     * hashes where each Unicode character represents one line.
     * @param text String to encode.
     * @param lineArray List of unique strings.
     * @param lineHash Map of strings to indices.
     * @param maxLines Maximum length of lineArray.
     * @return Encoded string.
     */
    private fun diff_linesToCharsMunge(
        text: String, lineArray: MutableList,
        lineHash: MutableMap, maxLines: Int
    ): String {
        var lineStart = 0
        var lineEnd = -1
        var line: String
        val chars = StringBuilder()
        // Walk the text, pulling out a substring for each line.
        // text.split('\n') would would temporarily double our memory footprint.
        // Modifying text would create many large strings to garbage collect.
        while (lineEnd < text.length - 1) {
            lineEnd = text.indexOf('\n', lineStart)
            if (lineEnd == -1) {
                lineEnd = text.length - 1
            }
            line = text.substring(lineStart, lineEnd + 1)

            if (lineHash.containsKey(line)) {
                chars.append((lineHash[line] as Int).toChar().toString())
            } else {
                if (lineArray.size == maxLines) {
                    // Bail out at 65535 because
                    // String.valueOf((char) 65536).equals(String.valueOf(((char) 0)))
                    line = text.substring(lineStart)
                    lineEnd = text.length
                }
                lineArray.add(line)
                lineHash[line] = lineArray.size - 1
                chars.append((lineArray.size - 1).toChar().toString())
            }
            lineStart = lineEnd + 1
        }
        return chars.toString()
    }

    /**
     * Rehydrate the text in a diff from a string of line hashes to real lines of
     * text.
     * @param diffs List of Diff objects.
     * @param lineArray List of unique strings.
     */
    private fun diff_charsToLines(
        diffs: List,
        lineArray: List
    ) {
        var text: StringBuilder
        for (diff: Diff in diffs) {
            text = StringBuilder()
            for (j in 0 until diff.text!!.length) {
                text.append(lineArray[diff.text!![j].code])
            }
            diff.text = text.toString()
        }
    }

    /**
     * Determine the common prefix of two strings
     * @param text1 First string.
     * @param text2 Second string.
     * @return The number of characters common to the start of each string.
     */
    fun diff_commonPrefix(text1: String?, text2: String?): Int {
        // Performance analysis: https://neil.fraser.name/news/2007/10/09/
        val n = min(text1!!.length.toDouble(), text2!!.length.toDouble()).toInt()
        for (i in 0 until n) {
            if (text1[i] != text2[i]) {
                return i
            }
        }
        return n
    }

    /**
     * Determine the common suffix of two strings
     * @param text1 First string.
     * @param text2 Second string.
     * @return The number of characters common to the end of each string.
     */
    fun diff_commonSuffix(text1: String?, text2: String?): Int {
        // Performance analysis: https://neil.fraser.name/news/2007/10/09/
        val text1_length = text1!!.length
        val text2_length = text2!!.length
        val n = min(text1_length.toDouble(), text2_length.toDouble()).toInt()
        for (i in 1..n) {
            if (text1[text1_length - i] != text2[text2_length - i]) {
                return i - 1
            }
        }
        return n
    }

    /**
     * Determine if the suffix of one string is the prefix of another.
     * @param text1 First string.
     * @param text2 Second string.
     * @return The number of characters common to the end of the first
     * string and the start of the second string.
     */
    private fun diff_commonOverlap(text1: String?, text2: String?): Int {
        // Cache the text lengths to prevent multiple calls.
        var text1 = text1
        var text2 = text2
        val text1_length = text1!!.length
        val text2_length = text2!!.length
        // Eliminate the null case.
        if (text1_length == 0 || text2_length == 0) {
            return 0
        }
        // Truncate the longer string.
        if (text1_length > text2_length) {
            text1 = text1.substring(text1_length - text2_length)
        } else if (text1_length < text2_length) {
            text2 = text2.substring(0, text1_length)
        }
        val text_length = min(text1_length.toDouble(), text2_length.toDouble()).toInt()
        // Quick check for the worst case.
        if (text1 == text2) {
            return text_length
        }

        // Start by looking for a single character match
        // and increase length until no match is found.
        // Performance analysis: https://neil.fraser.name/news/2010/11/04/
        var best = 0
        var length = 1
        while (true) {
            val pattern = text1.substring(text_length - length)
            val found = text2.indexOf(pattern)
            if (found == -1) {
                return best
            }
            length += found
            if (found == 0 || text1.substring(text_length - length) == text2.substring(0, length)) {
                best = length
                length++
            }
        }
    }

    /**
     * Do the two texts share a substring which is at least half the length of
     * the longer text?
     * This speedup can produce non-minimal diffs.
     * @param text1 First string.
     * @param text2 Second string.
     * @return Five element String array, containing the prefix of text1, the
     * suffix of text1, the prefix of text2, the suffix of text2 and the
     * common middle.  Or null if there was no match.
     */
    private fun diff_halfMatch(text1: String, text2: String): Array? {
        if (Diff_Timeout <= 0) {
            // Don't risk returning a non-optimal diff if we have unlimited time.
            return null
        }
        val longtext = if (text1.length > text2.length) text1 else text2
        val shorttext = if (text1.length > text2.length) text2 else text1
        if (longtext.length < 4 || shorttext.length * 2 < longtext.length) {
            return null // Pointless.
        }

        // First check if the second quarter is the seed for a half-match.
        val hm1 = diff_halfMatchI(
            longtext, shorttext,
            (longtext.length + 3) / 4
        )
        // Check again based on the third quarter.
        val hm2 = diff_halfMatchI(
            longtext, shorttext,
            (longtext.length + 1) / 2
        )
        val hm: Array?
        if (hm1 == null && hm2 == null) {
            return null
        } else if (hm2 == null) {
            hm = hm1
        } else if (hm1 == null) {
            hm = hm2
        } else {
            // Both matched.  Select the longest.
            hm = if (hm1[4].length > hm2[4].length) hm1 else hm2
        }

        // A half-match was found, sort out the return data.
        if (text1.length > text2.length) {
            return hm
            //return new String[]{hm[0], hm[1], hm[2], hm[3], hm[4]};
        } else {
            return arrayOf(hm!![2], hm[3], hm[0], hm[1], hm[4])
        }
    }

    /**
     * Does a substring of shorttext exist within longtext such that the
     * substring is at least half the length of longtext?
     * @param longtext Longer string.
     * @param shorttext Shorter string.
     * @param i Start index of quarter length substring within longtext.
     * @return Five element String array, containing the prefix of longtext, the
     * suffix of longtext, the prefix of shorttext, the suffix of shorttext
     * and the common middle.  Or null if there was no match.
     */
    private fun diff_halfMatchI(longtext: String, shorttext: String, i: Int): Array? {
        // Start with a 1/4 length substring at position i as a seed.
        val seed = longtext.substring(i, i + longtext.length / 4)
        var j = -1
        var best_common = ""
        var best_longtext_a = ""
        var best_longtext_b = ""
        var best_shorttext_a = ""
        var best_shorttext_b = ""
        while ((shorttext.indexOf(seed, j + 1).also { j = it }) != -1) {
            val prefixLength = diff_commonPrefix(
                longtext.substring(i),
                shorttext.substring(j)
            )
            val suffixLength = diff_commonSuffix(
                longtext.substring(0, i),
                shorttext.substring(0, j)
            )
            if (best_common.length < suffixLength + prefixLength) {
                best_common = (shorttext.substring(j - suffixLength, j)
                        + shorttext.substring(j, j + prefixLength))
                best_longtext_a = longtext.substring(0, i - suffixLength)
                best_longtext_b = longtext.substring(i + prefixLength)
                best_shorttext_a = shorttext.substring(0, j - suffixLength)
                best_shorttext_b = shorttext.substring(j + prefixLength)
            }
        }
        if (best_common.length * 2 >= longtext.length) {
            return arrayOf(
                best_longtext_a, best_longtext_b,
                best_shorttext_a, best_shorttext_b, best_common
            )
        } else {
            return null
        }
    }

    /**
     * Reduce the number of edits by eliminating semantically trivial equalities.
     * @param diffs LinkedList of Diff objects.
     */
    fun diff_cleanupSemantic(diffs: LinkedList) {
        if (diffs.isEmpty()) {
            return
        }
        var changes = false
        val equalities = ArrayDeque() // Double-ended queue of qualities.
        var lastEquality: String? = null // Always equal to equalities.peek().text
        var pointer = diffs.listIterator()
        // Number of characters that changed prior to the equality.
        var length_insertions1 = 0
        var length_deletions1 = 0
        // Number of characters that changed after the equality.
        var length_insertions2 = 0
        var length_deletions2 = 0
        var thisDiff: Diff? = pointer.next()
        while (thisDiff != null) {
            if (thisDiff.operation == Operation.EQUAL) {
                // Equality found.
                equalities.add(thisDiff)
                length_insertions1 = length_insertions2
                length_deletions1 = length_deletions2
                length_insertions2 = 0
                length_deletions2 = 0
                lastEquality = thisDiff.text
            } else {
                // An insertion or deletion.
                if (thisDiff.operation == Operation.INSERT) {
                    length_insertions2 += thisDiff.text!!.length
                } else {
                    length_deletions2 += thisDiff.text!!.length
                }
                // Eliminate an equality that is smaller or equal to the edits on both
                // sides of it.
                if (lastEquality != null && (lastEquality.length
                            <= max(length_insertions1.toDouble(), length_deletions1.toDouble()))
                    && (lastEquality.length
                            <= max(length_insertions2.toDouble(), length_deletions2.toDouble()))
                ) {
                    //System.out.println("Splitting: '" + lastEquality + "'");
                    // Walk back to offending equality.
                    while (thisDiff !== equalities.peek()) {
                        thisDiff = pointer.previous()
                    }
                    pointer.next()

                    // Replace equality with a delete.
                    pointer.set(Diff(Operation.DELETE, lastEquality))
                    // Insert a corresponding an insert.
                    pointer.add(Diff(Operation.INSERT, lastEquality))

                    equalities.pop() // Throw away the equality we just deleted.
                    if (!equalities.isEmpty()) {
                        // Throw away the previous equality (it needs to be reevaluated).
                        equalities.pop()
                    }
                    if (equalities.isEmpty()) {
                        // There are no previous equalities, walk back to the start.
                        while (pointer.hasPrevious()) {
                            pointer.previous()
                        }
                    } else {
                        // There is a safe equality we can fall back to.
                        thisDiff = equalities.peek()
                        while (thisDiff !== pointer.previous()) {
                            // Intentionally empty loop.
                        }
                    }

                    length_insertions1 = 0 // Reset the counters.
                    length_insertions2 = 0
                    length_deletions1 = 0
                    length_deletions2 = 0
                    lastEquality = null
                    changes = true
                }
            }
            thisDiff = if (pointer.hasNext()) pointer.next() else null
        }

        // Normalize the diff.
        if (changes) {
            diff_cleanupMerge(diffs)
        }
        diff_cleanupSemanticLossless(diffs)

        // Find any overlaps between deletions and insertions.
        // e.g: abcxxxxxxdef
        //   -> abcxxxdef
        // e.g: xxxabcdefxxx
        //   -> defxxxabc
        // Only extract an overlap if it is as big as the edit ahead or behind it.
        pointer = diffs.listIterator()
        var prevDiff: Diff? = null
        thisDiff = null
        if (pointer.hasNext()) {
            prevDiff = pointer.next()
            if (pointer.hasNext()) {
                thisDiff = pointer.next()
            }
        }
        while (thisDiff != null) {
            if (prevDiff!!.operation == Operation.DELETE &&
                thisDiff.operation == Operation.INSERT
            ) {
                val deletion = prevDiff.text
                val insertion = thisDiff.text
                val overlap_length1 = this.diff_commonOverlap(deletion, insertion)
                val overlap_length2 = this.diff_commonOverlap(insertion, deletion)
                if (overlap_length1 >= overlap_length2) {
                    if (overlap_length1 >= deletion!!.length / 2.0 ||
                        overlap_length1 >= insertion!!.length / 2.0
                    ) {
                        // Overlap found. Insert an equality and trim the surrounding edits.
                        pointer.previous()
                        pointer.add(
                            Diff(
                                Operation.EQUAL,
                                insertion!!.substring(0, overlap_length1)
                            )
                        )
                        prevDiff.text =
                            deletion.substring(0, deletion.length - overlap_length1)
                        thisDiff.text = insertion.substring(overlap_length1)
                        // pointer.add inserts the element before the cursor, so there is
                        // no need to step past the new element.
                    }
                } else {
                    if (overlap_length2 >= deletion!!.length / 2.0 ||
                        overlap_length2 >= insertion!!.length / 2.0
                    ) {
                        // Reverse overlap found.
                        // Insert an equality and swap and trim the surrounding edits.
                        pointer.previous()
                        pointer.add(
                            Diff(
                                Operation.EQUAL,
                                deletion.substring(0, overlap_length2)
                            )
                        )
                        prevDiff.operation = Operation.INSERT
                        prevDiff.text =
                            insertion!!.substring(0, insertion.length - overlap_length2)
                        thisDiff.operation = Operation.DELETE
                        thisDiff.text = deletion.substring(overlap_length2)
                        // pointer.add inserts the element before the cursor, so there is
                        // no need to step past the new element.
                    }
                }
                thisDiff = if (pointer.hasNext()) pointer.next() else null
            }
            prevDiff = thisDiff
            thisDiff = if (pointer.hasNext()) pointer.next() else null
        }
    }

    /**
     * Look for single edits surrounded on both sides by equalities
     * which can be shifted sideways to align the edit to a word boundary.
     * e.g: The cat came. -> The cat came.
     * @param diffs LinkedList of Diff objects.
     */
    private fun diff_cleanupSemanticLossless(diffs: LinkedList) {
        var equality1: String
        var edit: String
        var equality2: String
        var commonString: String
        var commonOffset: Int
        var score: Int
        var bestScore: Int
        var bestEquality1: String?
        var bestEdit: String?
        var bestEquality2: String?
        // Create a new iterator at the start.
        val pointer = diffs.listIterator()
        var prevDiff = if (pointer.hasNext()) pointer.next() else null
        var thisDiff = if (pointer.hasNext()) pointer.next() else null
        var nextDiff = if (pointer.hasNext()) pointer.next() else null
        // Intentionally ignore the first and last element (don't need checking).
        while (nextDiff != null) {
            if (prevDiff!!.operation == Operation.EQUAL &&
                nextDiff.operation == Operation.EQUAL
            ) {
                // This is a single edit surrounded by equalities.
                equality1 = prevDiff.text!!
                edit = thisDiff!!.text!!
                equality2 = nextDiff.text!!

                // First, shift the edit as far left as possible.
                commonOffset = diff_commonSuffix(equality1, edit)
                if (commonOffset != 0) {
                    commonString = edit.substring(edit.length - commonOffset)
                    equality1 = equality1.substring(0, equality1.length - commonOffset)
                    edit = commonString + edit.substring(0, edit.length - commonOffset)
                    equality2 = commonString + equality2
                }

                // Second, step character by character right, looking for the best fit.
                bestEquality1 = equality1
                bestEdit = edit
                bestEquality2 = equality2
                bestScore = (diff_cleanupSemanticScore(equality1, edit)
                        + diff_cleanupSemanticScore(edit, equality2))
                while (((edit.length != 0) && equality2.length != 0) && edit[0] == equality2[0]) {
                    equality1 += edit[0]
                    edit = edit.substring(1) + equality2[0]
                    equality2 = equality2.substring(1)
                    score = (diff_cleanupSemanticScore(equality1, edit)
                            + diff_cleanupSemanticScore(edit, equality2))
                    // The >= encourages trailing rather than leading whitespace on edits.
                    if (score >= bestScore) {
                        bestScore = score
                        bestEquality1 = equality1
                        bestEdit = edit
                        bestEquality2 = equality2
                    }
                }

                if (prevDiff.text != bestEquality1) {
                    // We have an improvement, save it back to the diff.
                    if (bestEquality1!!.length != 0) {
                        prevDiff.text = bestEquality1
                    } else {
                        pointer.previous() // Walk past nextDiff.
                        pointer.previous() // Walk past thisDiff.
                        pointer.previous() // Walk past prevDiff.
                        pointer.remove() // Delete prevDiff.
                        pointer.next() // Walk past thisDiff.
                        pointer.next() // Walk past nextDiff.
                    }
                    thisDiff.text = bestEdit
                    if (bestEquality2!!.length != 0) {
                        nextDiff.text = bestEquality2
                    } else {
                        pointer.remove() // Delete nextDiff.
                        nextDiff = thisDiff
                        thisDiff = prevDiff
                    }
                }
            }
            prevDiff = thisDiff
            thisDiff = nextDiff
            nextDiff = if (pointer.hasNext()) pointer.next() else null
        }
    }

    /**
     * Given two strings, compute a score representing whether the internal
     * boundary falls on logical boundaries.
     * Scores range from 6 (best) to 0 (worst).
     * @param one First string.
     * @param two Second string.
     * @return The score.
     */
    private fun diff_cleanupSemanticScore(one: String?, two: String?): Int {
        if (one!!.length == 0 || two!!.length == 0) {
            // Edges are the best.
            return 6
        }

        // Each port of this function behaves slightly differently due to
        // subtle differences in each language's definition of things like
        // 'whitespace'.  Since this function's purpose is largely cosmetic,
        // the choice has been made to use each language's native features
        // rather than force total conformity.
        val char1 = one[one.length - 1]
        val char2 = two[0]
        val nonAlphaNumeric1 = !Character.isLetterOrDigit(char1)
        val nonAlphaNumeric2 = !Character.isLetterOrDigit(char2)
        val whitespace1 = nonAlphaNumeric1 && Character.isWhitespace(char1)
        val whitespace2 = nonAlphaNumeric2 && Character.isWhitespace(char2)
        val lineBreak1 = (whitespace1
                && Character.getType(char1) == Character.CONTROL.toInt())
        val lineBreak2 = (whitespace2
                && Character.getType(char2) == Character.CONTROL.toInt())
        val blankLine1 = lineBreak1 && BLANKLINEEND.matcher(one).find()
        val blankLine2 = lineBreak2 && BLANKLINESTART.matcher(two).find()

        if (blankLine1 || blankLine2) {
            // Five points for blank lines.
            return 5
        } else if (lineBreak1 || lineBreak2) {
            // Four points for line breaks.
            return 4
        } else if (nonAlphaNumeric1 && !whitespace1 && whitespace2) {
            // Three points for end of sentences.
            return 3
        } else if (whitespace1 || whitespace2) {
            // Two points for whitespace.
            return 2
        } else if (nonAlphaNumeric1 || nonAlphaNumeric2) {
            // One point for non-alphanumeric.
            return 1
        }
        return 0
    }

    // Define some regex patterns for matching boundaries.
    private val BLANKLINEEND
            : Pattern = Pattern.compile("\\n\\r?\\n\\Z", Pattern.DOTALL)
    private val BLANKLINESTART
            : Pattern = Pattern.compile("\\A\\r?\\n\\r?\\n", Pattern.DOTALL)

    /**
     * Reduce the number of edits by eliminating operationally trivial equalities.
     * @param diffs LinkedList of Diff objects.
     */
    fun diff_cleanupEfficiency(diffs: LinkedList) {
        if (diffs.isEmpty()) {
            return
        }
        var changes = false
        val equalities = ArrayDeque() // Double-ended queue of equalities.
        var lastEquality: String? = null // Always equal to equalities.peek().text
        val pointer = diffs.listIterator()
        // Is there an insertion operation before the last equality.
        var pre_ins = false
        // Is there a deletion operation before the last equality.
        var pre_del = false
        // Is there an insertion operation after the last equality.
        var post_ins = false
        // Is there a deletion operation after the last equality.
        var post_del = false
        var thisDiff: Diff? = pointer.next()
        var safeDiff = thisDiff // The last Diff that is known to be unsplittable.
        while (thisDiff != null) {
            if (thisDiff.operation == Operation.EQUAL) {
                // Equality found.
                if (thisDiff.text!!.length < Diff_EditCost && (post_ins || post_del)) {
                    // Candidate found.
                    equalities.push(thisDiff)
                    pre_ins = post_ins
                    pre_del = post_del
                    lastEquality = thisDiff.text
                } else {
                    // Not a candidate, and can never become one.
                    equalities.clear()
                    lastEquality = null
                    safeDiff = thisDiff
                }
                post_del = false
                post_ins = post_del
            } else {
                // An insertion or deletion.
                if (thisDiff.operation == Operation.DELETE) {
                    post_del = true
                } else {
                    post_ins = true
                }
                /*
                         * Five types to be split:
                         * ABXYCD
                         * AXCD
                         * ABXC
                         * AXCD
                         * ABXC
                         */
                if (lastEquality != null
                    && ((pre_ins && pre_del && post_ins && post_del)
                            || ((lastEquality.length < Diff_EditCost / 2)
                            && ((if (pre_ins) 1 else 0) + (if (pre_del) 1 else 0)
                            + (if (post_ins) 1 else 0) + (if (post_del) 1 else 0)) == 3))
                ) {
                    //System.out.println("Splitting: '" + lastEquality + "'");
                    // Walk back to offending equality.
                    while (thisDiff !== equalities.peek()) {
                        thisDiff = pointer.previous()
                    }
                    pointer.next()

                    // Replace equality with a delete.
                    pointer.set(Diff(Operation.DELETE, lastEquality))
                    // Insert a corresponding an insert.
                    pointer.add(Diff(Operation.INSERT, lastEquality).also {
                        thisDiff = it
                    })

                    equalities.pop() // Throw away the equality we just deleted.
                    lastEquality = null
                    if (pre_ins && pre_del) {
                        // No changes made which could affect previous entry, keep going.
                        post_del = true
                        post_ins = post_del
                        equalities.clear()
                        safeDiff = thisDiff
                    } else {
                        if (!equalities.isEmpty()) {
                            // Throw away the previous equality (it needs to be reevaluated).
                            equalities.pop()
                        }
                        if (equalities.isEmpty()) {
                            // There are no previous questionable equalities,
                            // walk back to the last known safe diff.
                            thisDiff = safeDiff
                        } else {
                            // There is an equality we can fall back to.
                            thisDiff = equalities.peek()
                        }
                        while (thisDiff !== pointer.previous()) {
                            // Intentionally empty loop.
                        }
                        post_del = false
                        post_ins = post_del
                    }

                    changes = true
                }
            }
            thisDiff = if (pointer.hasNext()) pointer.next() else null
        }

        if (changes) {
            diff_cleanupMerge(diffs)
        }
    }

    /**
     * Reorder and merge like edit sections.  Merge equalities.
     * Any edit section can move as long as it doesn't cross an equality.
     * @param diffs LinkedList of Diff objects.
     */
    private fun diff_cleanupMerge(diffs: LinkedList) {
        diffs.add(Diff(Operation.EQUAL, "")) // Add a dummy entry at the end.
        var pointer = diffs.listIterator()
        var count_delete = 0
        var count_insert = 0
        var text_delete: String? = ""
        var text_insert: String? = ""
        var thisDiff: Diff? = pointer.next()
        var prevEqual: Diff? = null
        var commonlength: Int
        while (thisDiff != null) {
            when (thisDiff.operation) {
                Operation.INSERT -> {
                    count_insert++
                    text_insert += thisDiff.text
                    prevEqual = null
                }

                Operation.DELETE -> {
                    count_delete++
                    text_delete += thisDiff.text
                    prevEqual = null
                }

                Operation.EQUAL -> {
                    if (count_delete + count_insert > 1) {
                        val both_types = count_delete != 0 && count_insert != 0
                        // Delete the offending records.
                        pointer.previous() // Reverse direction.
                        while (count_delete-- > 0) {
                            pointer.previous()
                            pointer.remove()
                        }
                        while (count_insert-- > 0) {
                            pointer.previous()
                            pointer.remove()
                        }
                        if (both_types) {
                            // Factor out any common prefixies.
                            commonlength = diff_commonPrefix(text_insert, text_delete)
                            if (commonlength != 0) {
                                if (pointer.hasPrevious()) {
                                    thisDiff = pointer.previous()
                                    assert(
                                        thisDiff.operation == Operation.EQUAL
                                    ) { "Previous diff should have been an equality." }
                                    thisDiff.text += text_insert!!.substring(0, commonlength)
                                    pointer.next()
                                } else {
                                    pointer.add(
                                        Diff(
                                            Operation.EQUAL,
                                            text_insert!!.substring(0, commonlength)
                                        )
                                    )
                                }
                                text_insert = text_insert.substring(commonlength)
                                text_delete = text_delete!!.substring(commonlength)
                            }
                            // Factor out any common suffixies.
                            commonlength = diff_commonSuffix(text_insert, text_delete)
                            if (commonlength != 0) {
                                thisDiff = pointer.next()
                                thisDiff.text = text_insert!!.substring(
                                    text_insert.length
                                            - commonlength
                                ) + thisDiff.text
                                text_insert = text_insert.substring(
                                    0, text_insert.length
                                            - commonlength
                                )
                                text_delete = text_delete!!.substring(
                                    0, text_delete.length
                                            - commonlength
                                )
                                pointer.previous()
                            }
                        }
                        // Insert the merged records.
                        if (text_delete!!.length != 0) {
                            pointer.add(Diff(Operation.DELETE, text_delete))
                        }
                        if (text_insert!!.length != 0) {
                            pointer.add(Diff(Operation.INSERT, text_insert))
                        }
                        // Step forward to the equality.
                        thisDiff = if (pointer.hasNext()) pointer.next() else null
                    } else if (prevEqual != null) {
                        // Merge this equality with the previous one.
                        prevEqual.text += thisDiff.text
                        pointer.remove()
                        thisDiff = pointer.previous()
                        pointer.next() // Forward direction
                    }
                    count_insert = 0
                    count_delete = 0
                    text_delete = ""
                    text_insert = ""
                    prevEqual = thisDiff
                }

                null -> TODO()
            }
            thisDiff = if (pointer.hasNext()) pointer.next() else null
        }
        if (diffs.last.text!!.length == 0) {
            diffs.removeLast() // Remove the dummy entry at the end.
        }

        /*
             * Second pass: look for single edits surrounded on both sides by equalities
             * which can be shifted sideways to eliminate an equality.
             * e.g: ABAC -> ABAC
             */
        var changes = false
        // Create a new iterator at the start.
        // (As opposed to walking the current one back.)
        pointer = diffs.listIterator()
        var prevDiff = if (pointer.hasNext()) pointer.next() else null
        thisDiff = if (pointer.hasNext()) pointer.next() else null
        var nextDiff = if (pointer.hasNext()) pointer.next() else null
        // Intentionally ignore the first and last element (don't need checking).
        while (nextDiff != null) {
            if (prevDiff!!.operation == Operation.EQUAL &&
                nextDiff.operation == Operation.EQUAL
            ) {
                // This is a single edit surrounded by equalities.
                if (thisDiff!!.text!!.endsWith(prevDiff.text!!)) {
                    // Shift the edit over the previous equality.
                    thisDiff.text = (prevDiff.text
                            + thisDiff.text!!.substring(
                        0, thisDiff.text!!.length
                                - prevDiff.text!!.length
                    ))
                    nextDiff.text = prevDiff.text + nextDiff.text
                    pointer.previous() // Walk past nextDiff.
                    pointer.previous() // Walk past thisDiff.
                    pointer.previous() // Walk past prevDiff.
                    pointer.remove() // Delete prevDiff.
                    pointer.next() // Walk past thisDiff.
                    thisDiff = pointer.next() // Walk past nextDiff.
                    nextDiff = if (pointer.hasNext()) pointer.next() else null
                    changes = true
                } else if (thisDiff.text!!.startsWith(nextDiff.text!!)) {
                    // Shift the edit over the next equality.
                    prevDiff.text += nextDiff.text
                    thisDiff.text = (thisDiff.text!!.substring(nextDiff.text!!.length)
                            + nextDiff.text)
                    pointer.remove() // Delete nextDiff.
                    nextDiff = if (pointer.hasNext()) pointer.next() else null
                    changes = true
                }
            }
            prevDiff = thisDiff
            thisDiff = nextDiff
            nextDiff = if (pointer.hasNext()) pointer.next() else null
        }
        // If shifts were made, the diff needs reordering and another shift sweep.
        if (changes) {
            diff_cleanupMerge(diffs)
        }
    }

    /**
     * loc is a location in text1, compute and return the equivalent location in
     * text2.
     * e.g. "The cat" vs "The big cat", 1->1, 5->8
     * @param diffs List of Diff objects.
     * @param loc Location within text1.
     * @return Location within text2.
     */
    private fun diff_xIndex(diffs: List, loc: Int): Int {
        var chars1 = 0
        var chars2 = 0
        var last_chars1 = 0
        var last_chars2 = 0
        var lastDiff: Diff? = null
        for (aDiff: Diff in diffs) {
            if (aDiff.operation != Operation.INSERT) {
                // Equality or deletion.
                chars1 += aDiff.text!!.length
            }
            if (aDiff.operation != Operation.DELETE) {
                // Equality or insertion.
                chars2 += aDiff.text!!.length
            }
            if (chars1 > loc) {
                // Overshot the location.
                lastDiff = aDiff
                break
            }
            last_chars1 = chars1
            last_chars2 = chars2
        }
        if (lastDiff != null && lastDiff.operation == Operation.DELETE) {
            // The location was deleted.
            return last_chars2
        }
        // Add the remaining character length.
        return last_chars2 + (loc - last_chars1)
    }

    /**
     * Compute and return the source text (all equalities and deletions).
     * @param diffs List of Diff objects.
     * @return Source text.
     */
    private fun diff_text1(diffs: List): String {
        val text = StringBuilder()
        for (aDiff: Diff in diffs) {
            if (aDiff.operation != Operation.INSERT) {
                text.append(aDiff.text)
            }
        }
        return text.toString()
    }

    /**
     * Compute and return the destination text (all equalities and insertions).
     * @param diffs List of Diff objects.
     * @return Destination text.
     */
    private fun diff_text2(diffs: List): String {
        val text = StringBuilder()
        for (aDiff: Diff in diffs) {
            if (aDiff.operation != Operation.DELETE) {
                text.append(aDiff.text)
            }
        }
        return text.toString()
    }

    /**
     * Compute the Levenshtein distance; the number of inserted, deleted or
     * substituted characters.
     * @param diffs List of Diff objects.
     * @return Number of changes.
     */
    private fun diff_levenshtein(diffs: List): Int {
        var levenshtein = 0
        var insertions = 0
        var deletions = 0
        for (aDiff: Diff in diffs) {
            when (aDiff.operation) {
                Operation.INSERT -> insertions += aDiff.text!!.length
                Operation.DELETE -> deletions += aDiff.text!!.length
                Operation.EQUAL -> {
                    // A deletion and an insertion is one substitution.
                    levenshtein += (max(insertions.toDouble(), deletions.toDouble())).toInt()
                    insertions = 0
                    deletions = 0
                }

                null -> TODO()
            }
        }
        levenshtein += (max(insertions.toDouble(), deletions.toDouble())).toInt()
        return levenshtein
    }


    //  MATCH FUNCTIONS
    /**
     * Locate the best instance of 'pattern' in 'text' near 'loc'.
     * Returns -1 if no match found.
     * @param text The text to search.
     * @param pattern The pattern to search for.
     * @param loc The location to search around.
     * @return Best match index or -1.
     */
    private fun match_main(text: String?, pattern: String?, loc: Int): Int {
        // Check for null inputs.
        var loc = loc
        if (text == null || pattern == null) {
            throw IllegalArgumentException("Null inputs. (match_main)")
        }

        loc = max(0.0, min(loc.toDouble(), text.length.toDouble())).toInt()
        if ((text == pattern)) {
            // Shortcut (potentially not guaranteed by the algorithm)
            return 0
        } else if (text.length == 0) {
            // Nothing to match.
            return -1
        } else if ((loc + pattern.length <= text.length
                    && (text.substring(loc, loc + pattern.length) == pattern))
        ) {
            // Perfect match at the perfect spot!  (Includes case of null pattern)
            return loc
        } else {
            // Do a fuzzy compare.
            return match_bitap(text, pattern, loc)
        }
    }

    /**
     * Locate the best instance of 'pattern' in 'text' near 'loc' using the
     * Bitap algorithm.  Returns -1 if no match found.
     * @param text The text to search.
     * @param pattern The pattern to search for.
     * @param loc The location to search around.
     * @return Best match index or -1.
     */
    private fun match_bitap(text: String, pattern: String, loc: Int): Int {
        assert(Match_MaxBits.toInt() == 0 || pattern.length <= Match_MaxBits) { "Pattern too long for this application." }
        // Initialise the alphabet.
        val s = match_alphabet(pattern)

        // Highest score beyond which we give up.
        var score_threshold = Match_Threshold.toDouble()
        // Is there a nearby exact match? (speedup)
        var best_loc = text.indexOf(pattern, loc)
        if (best_loc != -1) {
            score_threshold = min(
                match_bitapScore(0, best_loc, loc, pattern),
                score_threshold
            )
            // What about in the other direction? (speedup)
            best_loc = text.lastIndexOf(pattern, loc + pattern.length)
            if (best_loc != -1) {
                score_threshold = min(
                    match_bitapScore(0, best_loc, loc, pattern),
                    score_threshold
                )
            }
        }

        // Initialise the bit arrays.
        val matchmask = 1 shl (pattern.length - 1)
        best_loc = -1

        var bin_min: Int
        var bin_mid: Int
        var bin_max = pattern.length + text.length
        // Empty initialization added to appease Java compiler.
        var last_rd = IntArray(0)
        for (d in 0 until pattern.length) {
            // Scan for the best match; each iteration allows for one more error.
            // Run a binary search to determine how far from 'loc' we can stray at
            // this error level.
            bin_min = 0
            bin_mid = bin_max
            while (bin_min < bin_mid) {
                if ((match_bitapScore(d, loc + bin_mid, loc, pattern)
                            <= score_threshold)
                ) {
                    bin_min = bin_mid
                } else {
                    bin_max = bin_mid
                }
                bin_mid = (bin_max - bin_min) / 2 + bin_min
            }
            // Use the result from this iteration as the maximum for the next.
            bin_max = bin_mid
            var start = max(1.0, (loc - bin_mid + 1).toDouble()).toInt()
            val finish = (min((loc + bin_mid).toDouble(), text.length.toDouble()) + pattern.length).toInt()

            val rd = IntArray(finish + 2)
            rd[finish + 1] = (1 shl d) - 1
            var j = finish
            while (j >= start) {
                var charMatch: Int
                if (text.length <= j - 1 || !s.containsKey(text[j - 1])) {
                    // Out of range.
                    charMatch = 0
                } else {
                    charMatch = (s[text[j - 1]])!!
                }
                if (d == 0) {
                    // First pass: exact match.
                    rd[j] = ((rd[j + 1] shl 1) or 1) and charMatch
                } else {
                    // Subsequent passes: fuzzy match.
                    rd[j] = ((((rd[j + 1] shl 1) or 1) and charMatch)
                            or (((last_rd[j + 1] or last_rd[j]) shl 1) or 1) or last_rd[j + 1])
                }
                if ((rd[j] and matchmask) != 0) {
                    val score = match_bitapScore(d, j - 1, loc, pattern)
                    // This match will almost certainly be better than any existing
                    // match.  But check anyway.
                    if (score <= score_threshold) {
                        // Told you so.
                        score_threshold = score
                        best_loc = j - 1
                        if (best_loc > loc) {
                            // When passing loc, don't exceed our current distance from loc.
                            start = max(1.0, (2 * loc - best_loc).toDouble()).toInt()
                        } else {
                            // Already passed loc, downhill from here on in.
                            break
                        }
                    }
                }
                j--
            }
            if (match_bitapScore(d + 1, loc, loc, pattern) > score_threshold) {
                // No hope for a (better) match at greater error levels.
                break
            }
            last_rd = rd
        }
        return best_loc
    }

    /**
     * Compute and return the score for a match with e errors and x location.
     * @param e Number of errors in match.
     * @param x Location of match.
     * @param loc Expected location of match.
     * @param pattern Pattern being sought.
     * @return Overall score for match (0.0 = good, 1.0 = bad).
     */
    private fun match_bitapScore(e: Int, x: Int, loc: Int, pattern: String): Double {
        val accuracy = e.toFloat() / pattern.length
        val proximity = abs((loc - x).toDouble()).toInt()
        if (Match_Distance == 0) {
            // Dodge divide by zero error.
            return if (proximity == 0) accuracy.toDouble() else 1.0
        }
        return (accuracy + (proximity / Match_Distance.toFloat())).toDouble()
    }

    /**
     * Initialise the alphabet for the Bitap algorithm.
     * @param pattern The text to encode.
     * @return Hash of character locations.
     */
    private fun match_alphabet(pattern: String): Map {
        val s: MutableMap = HashMap()
        val char_pattern = pattern.toCharArray()
        for (c: Char in char_pattern) {
            s[c] = 0
        }
        var i = 0
        for (c: Char in char_pattern) {
            s[c] = s.get(c)!! or (1 shl (pattern.length - i - 1))
            i++
        }
        return s
    }


    //  PATCH FUNCTIONS
    /**
     * Increase the context until it is unique,
     * but don't let the pattern expand beyond Match_MaxBits.
     * @param patch The patch to grow.
     * @param text Source text.
     */
    private fun patch_addContext(patch: Patch, text: String) {
        if (text.length == 0) {
            return
        }
        var pattern = text.substring(patch.start2, patch.start2 + patch.length1)
        var padding = 0

        // Look for the first and last matches of pattern in text.  If two different
        // matches are found, increase the pattern length.
        while ((text.indexOf(pattern) != text.lastIndexOf(pattern)
                    && pattern.length < Match_MaxBits - Patch_Margin - Patch_Margin)
        ) {
            padding += Patch_Margin.toInt()
            pattern = text.substring(
                max(0.0, (patch.start2 - padding).toDouble()).toInt(),
                min(text.length.toDouble(), (patch.start2 + patch.length1 + padding).toDouble()).toInt()
            )
        }
        // Add one chunk for good luck.
        padding += Patch_Margin.toInt()

        // Add the prefix.
        val prefix = text.substring(
            max(0.0, (patch.start2 - padding).toDouble()).toInt(),
            patch.start2
        )
        if (prefix.length != 0) {
            patch.diffs.addFirst(Diff(Operation.EQUAL, prefix))
        }
        // Add the suffix.
        val suffix = text.substring(
            patch.start2 + patch.length1,
            min(text.length.toDouble(), (patch.start2 + patch.length1 + padding).toDouble()).toInt()
        )
        if (suffix.length != 0) {
            patch.diffs.addLast(Diff(Operation.EQUAL, suffix))
        }

        // Roll back the start points.
        patch.start1 -= prefix.length
        patch.start2 -= prefix.length
        // Extend the lengths.
        patch.length1 += prefix.length + suffix.length
        patch.length2 += prefix.length + suffix.length
    }

    /**
     * Compute a list of patches to turn text1 into text2.
     * A set of diffs will be computed.
     * @param text1 Old text.
     * @param text2 New text.
     * @return LinkedList of Patch objects.
     */
    fun patch_make(text1: String?, text2: String?): LinkedList {
        if (text1 == null || text2 == null) {
            throw IllegalArgumentException("Null inputs. (patch_make)")
        }
        // No diffs provided, compute our own.
        val diffs = diff_main(text1, text2, true)
        if (diffs.size > 2) {
            diff_cleanupSemantic(diffs)
            diff_cleanupEfficiency(diffs)
        }
        return patch_make(text1, diffs)
    }

    /**
     * Compute a list of patches to turn text1 into text2.
     * text1 will be derived from the provided diffs.
     * @param diffs Array of Diff objects for text1 to text2.
     * @return LinkedList of Patch objects.
     */
    fun patch_make(diffs: LinkedList?): LinkedList {
        if (diffs == null) {
            throw IllegalArgumentException("Null inputs. (patch_make)")
        }
        // No origin string provided, compute our own.
        val text1 = diff_text1(diffs)
        return patch_make(text1, diffs)
    }

    /**
     * Compute a list of patches to turn text1 into text2.
     * text2 is ignored, diffs are the delta between text1 and text2.
     * @param text1 Old text
     * @param text2 Ignored.
     * @param diffs Array of Diff objects for text1 to text2.
     * @return LinkedList of Patch objects.
     */
    @Deprecated("Prefer patch_make(String text1, LinkedList diffs).")
    fun patch_make(
        text1: String?, text2: String?,
        diffs: LinkedList?
    ): LinkedList {
        return patch_make(text1, diffs)
    }

    /**
     * Compute a list of patches to turn text1 into text2.
     * text2 is not provided, diffs are the delta between text1 and text2.
     * @param text1 Old text.
     * @param diffs Array of Diff objects for text1 to text2.
     * @return LinkedList of Patch objects.
     */
    fun patch_make(text1: String?, diffs: LinkedList?): LinkedList {
        if (text1 == null || diffs == null) {
            throw IllegalArgumentException("Null inputs. (patch_make)")
        }

        val patches = LinkedList()
        if (diffs.isEmpty()) {
            return patches // Get rid of the null case.
        }
        var patch = Patch()
        var char_count1 = 0 // Number of characters into the text1 string.
        var char_count2 = 0 // Number of characters into the text2 string.
        // Start with text1 (prepatch_text) and apply the diffs until we arrive at
        // text2 (postpatch_text). We recreate the patches one by one to determine
        // context info.
        var prepatch_text: String = text1
        var postpatch_text: String = text1
        for (aDiff: Diff in diffs) {
            if (patch.diffs.isEmpty() && aDiff.operation != Operation.EQUAL) {
                // A new patch starts here.
                patch.start1 = char_count1
                patch.start2 = char_count2
            }

            when (aDiff.operation) {
                Operation.INSERT -> {
                    patch.diffs.add(aDiff)
                    patch.length2 += aDiff.text!!.length
                    postpatch_text = (postpatch_text.substring(0, char_count2)
                            + aDiff.text + postpatch_text.substring(char_count2))
                }

                Operation.DELETE -> {
                    patch.length1 += aDiff.text!!.length
                    patch.diffs.add(aDiff)
                    postpatch_text = (postpatch_text.substring(0, char_count2)
                            + postpatch_text.substring(char_count2 + aDiff.text!!.length))
                }

                Operation.EQUAL -> {
                    if ((aDiff.text!!.length <= 2 * Patch_Margin
                                ) && !patch.diffs.isEmpty() && (aDiff !== diffs.last)
                    ) {
                        // Small equality inside a patch.
                        patch.diffs.add(aDiff)
                        patch.length1 += aDiff.text!!.length
                        patch.length2 += aDiff.text!!.length
                    }

                    if (aDiff.text!!.length >= 2 * Patch_Margin && !patch.diffs.isEmpty()) {
                        // Time for a new patch.
                        if (!patch.diffs.isEmpty()) {
                            patch_addContext(patch, prepatch_text)
                            patches.add(patch)
                            patch = Patch()
                            // Unlike Unidiff, our patch lists have a rolling context.
                            // https://github.com/google/diff-match-patch/wiki/Unidiff
                            // Update prepatch text & pos to reflect the application of the
                            // just completed patch.
                            prepatch_text = postpatch_text
                            char_count1 = char_count2
                        }
                    }
                }

                null -> TODO()
            }
            // Update the current character count.
            if (aDiff.operation != Operation.INSERT) {
                char_count1 += aDiff.text!!.length
            }
            if (aDiff.operation != Operation.DELETE) {
                char_count2 += aDiff.text!!.length
            }
        }
        // Pick up the leftover patch if not empty.
        if (!patch.diffs.isEmpty()) {
            patch_addContext(patch, prepatch_text)
            patches.add(patch)
        }

        return patches
    }

    /**
     * Given an array of patches, return another array that is identical.
     * @param patches Array of Patch objects.
     * @return Array of Patch objects.
     */
    private fun patch_deepCopy(patches: LinkedList): LinkedList {
        val patchesCopy = LinkedList()
        for (aPatch: Patch in patches) {
            val patchCopy = Patch()
            for (aDiff: Diff in aPatch.diffs) {
                val diffCopy = Diff(aDiff.operation, aDiff.text)
                patchCopy.diffs.add(diffCopy)
            }
            patchCopy.start1 = aPatch.start1
            patchCopy.start2 = aPatch.start2
            patchCopy.length1 = aPatch.length1
            patchCopy.length2 = aPatch.length2
            patchesCopy.add(patchCopy)
        }
        return patchesCopy
    }

    /**
     * Merge a set of patches onto the text.  Return a patched text, as well
     * as an array of true/false values indicating which patches were applied.
     * @param patches Array of Patch objects
     * @param text Old text.
     * @return Two element Object array, containing the new text and an array of
     * boolean values.
     */
    fun patch_apply(patches: LinkedList, text: String): Array {
        var patches = patches
        var text = text
        if (patches.isEmpty()) {
            return arrayOf(text, BooleanArray(0))
        }

        // Deep copy the patches so that no changes are made to originals.
        patches = patch_deepCopy(patches)

        val nullPadding = patch_addPadding(patches)
        text = nullPadding + text + nullPadding
        patch_splitMax(patches)

        var x = 0
        // delta keeps track of the offset between the expected and actual location
        // of the previous patch.  If there are patches expected at positions 10 and
        // 20, but the first patch was found at 12, delta is 2 and the second patch
        // has an effective expected position of 22.
        var delta = 0
        val results = BooleanArray(patches.size)
        for (aPatch: Patch in patches) {
            val expected_loc = aPatch.start2 + delta
            val text1 = diff_text1(aPatch.diffs)
            var start_loc: Int
            var end_loc = -1
            if (text1.length > this.Match_MaxBits) {
                // patch_splitMax will only provide an oversized pattern in the case of
                // a monster delete.
                start_loc = match_main(
                    text,
                    text1.substring(0, Match_MaxBits.toInt()), expected_loc
                )
                if (start_loc != -1) {
                    end_loc = match_main(
                        text,
                        text1.substring(text1.length - this.Match_MaxBits),
                        expected_loc + text1.length - this.Match_MaxBits
                    )
                    if (end_loc == -1 || start_loc >= end_loc) {
                        // Can't find valid trailing context.  Drop this patch.
                        start_loc = -1
                    }
                }
            } else {
                start_loc = match_main(text, text1, expected_loc)
            }
            if (start_loc == -1) {
                // No match found.  :(
                results[x] = false
                // Subtract the delta for this failed patch from subsequent patches.
                delta -= aPatch.length2 - aPatch.length1
            } else {
                // Found a match.  :)
                results[x] = true
                delta = start_loc - expected_loc
                var text2: String
                if (end_loc == -1) {
                    text2 = text.substring(
                        start_loc,
                        min((start_loc + text1.length).toDouble(), text.length.toDouble()).toInt()
                    )
                } else {
                    text2 = text.substring(
                        start_loc,
                        min((end_loc + this.Match_MaxBits).toDouble(), text.length.toDouble()).toInt()
                    )
                }
                if ((text1 == text2)) {
                    // Perfect match, just shove the replacement text in.
                    text = (text.substring(0, start_loc) + diff_text2(aPatch.diffs)
                            + text.substring(start_loc + text1.length))
                } else {
                    // Imperfect match.  Run a diff to get a framework of equivalent
                    // indices.
                    val diffs = diff_main(text1, text2, false)
                    if ((text1.length > this.Match_MaxBits
                                && diff_levenshtein(diffs) / text1.length.toFloat()
                                > this.Patch_DeleteThreshold)
                    ) {
                        // The end points match, but the content is unacceptably bad.
                        results[x] = false
                    } else {
                        diff_cleanupSemanticLossless(diffs)
                        var index1 = 0
                        for (aDiff: Diff in aPatch.diffs) {
                            if (aDiff.operation != Operation.EQUAL) {
                                val index2 = diff_xIndex(diffs, index1)
                                if (aDiff.operation == Operation.INSERT) {
                                    // Insertion
                                    text = (text.substring(0, start_loc + index2) + aDiff.text
                                            + text.substring(start_loc + index2))
                                } else if (aDiff.operation == Operation.DELETE) {
                                    // Deletion
                                    text = (text.substring(0, start_loc + index2)
                                            + text.substring(
                                        start_loc + diff_xIndex(
                                            diffs,
                                            index1 + aDiff.text!!.length
                                        )
                                    ))
                                }
                            }
                            if (aDiff.operation != Operation.DELETE) {
                                index1 += aDiff.text!!.length
                            }
                        }
                    }
                }
            }
            x++
        }
        // Strip the padding off.
        text = text.substring(
            nullPadding.length, (text.length
                    - nullPadding.length)
        )
        return arrayOf(text, results)
    }

    /**
     * Add some padding on text start and end so that edges can match something.
     * Intended to be called only from within patch_apply.
     * @param patches Array of Patch objects.
     * @return The padding string added to each side.
     */
    private fun patch_addPadding(patches: LinkedList): String {
        val paddingLength = this.Patch_Margin
        var nullPadding = ""
        for (x in 1..paddingLength) {
            nullPadding += (Char(x.toUShort())).toString()
        }

        // Bump all the patches forward.
        for (aPatch: Patch in patches) {
            aPatch.start1 += paddingLength.toInt()
            aPatch.start2 += paddingLength.toInt()
        }

        // Add some padding on start of first diff.
        var patch = patches.first
        var diffs = patch.diffs
        if (diffs.isEmpty() || diffs.first.operation != Operation.EQUAL) {
            // Add nullPadding equality.
            diffs.addFirst(Diff(Operation.EQUAL, nullPadding))
            patch.start1 -= paddingLength.toInt() // Should be 0.
            patch.start2 -= paddingLength.toInt() // Should be 0.
            patch.length1 += paddingLength.toInt()
            patch.length2 += paddingLength.toInt()
        } else if (paddingLength > diffs.first.text!!.length) {
            // Grow first equality.
            val firstDiff = diffs.first
            val extraLength = paddingLength - firstDiff.text!!.length
            firstDiff.text = (nullPadding.substring(firstDiff.text!!.length)
                    + firstDiff.text)
            patch.start1 -= extraLength
            patch.start2 -= extraLength
            patch.length1 += extraLength
            patch.length2 += extraLength
        }

        // Add some padding on end of last diff.
        patch = patches.last
        diffs = patch.diffs
        if (diffs.isEmpty() || diffs.last.operation != Operation.EQUAL) {
            // Add nullPadding equality.
            diffs.addLast(Diff(Operation.EQUAL, nullPadding))
            patch.length1 += paddingLength.toInt()
            patch.length2 += paddingLength.toInt()
        } else if (paddingLength > diffs.last.text!!.length) {
            // Grow last equality.
            val lastDiff = diffs.last
            val extraLength = paddingLength - lastDiff.text!!.length
            lastDiff.text += nullPadding.substring(0, extraLength)
            patch.length1 += extraLength
            patch.length2 += extraLength
        }

        return nullPadding
    }

    /**
     * Look through the patches and break up any which are longer than the
     * maximum limit of the match algorithm.
     * Intended to be called only from within patch_apply.
     * @param patches LinkedList of Patch objects.
     */
    private fun patch_splitMax(patches: LinkedList) {
        val patch_size = Match_MaxBits
        var precontext: String
        var postcontext: String
        var patch: Patch
        var start1: Int
        var start2: Int
        var empty: Boolean
        var diff_type: Operation
        var diff_text: String
        val pointer = patches.listIterator()
        var bigpatch = if (pointer.hasNext()) pointer.next() else null
        while (bigpatch != null) {
            if (bigpatch.length1 <= Match_MaxBits) {
                bigpatch = if (pointer.hasNext()) pointer.next() else null
                continue
            }
            // Remove the big old patch.
            pointer.remove()
            start1 = bigpatch.start1
            start2 = bigpatch.start2
            precontext = ""
            while (!bigpatch.diffs.isEmpty()) {
                // Create one of several smaller patches.
                patch = Patch()
                empty = true
                patch.start1 = start1 - precontext.length
                patch.start2 = start2 - precontext.length
                if (precontext.length != 0) {
                    patch.length2 = precontext.length
                    patch.length1 = patch.length2
                    patch.diffs.add(Diff(Operation.EQUAL, precontext))
                }
                while ((!bigpatch.diffs.isEmpty()
                            && patch.length1 < patch_size - Patch_Margin)
                ) {
                    diff_type = bigpatch.diffs.first.operation!!
                    diff_text = bigpatch.diffs.first.text!!
                    if (diff_type == Operation.INSERT) {
                        // Insertions are harmless.
                        patch.length2 += diff_text.length
                        start2 += diff_text.length
                        patch.diffs.addLast(bigpatch.diffs.removeFirst())
                        empty = false
                    } else if ((diff_type == Operation.DELETE) && (patch.diffs.size == 1
                                ) && (patch.diffs.first.operation == Operation.EQUAL
                                ) && (diff_text.length > 2 * patch_size)
                    ) {
                        // This is a large deletion.  Let it pass in one chunk.
                        patch.length1 += diff_text.length
                        start1 += diff_text.length
                        empty = false
                        patch.diffs.add(Diff(diff_type, diff_text))
                        bigpatch.diffs.removeFirst()
                    } else {
                        // Deletion or equality.  Only take as much as we can stomach.
                        diff_text = diff_text.substring(
                            0, min(
                                diff_text.length.toDouble(),
                                (patch_size - patch.length1 - Patch_Margin).toDouble()
                            ).toInt()
                        )
                        patch.length1 += diff_text.length
                        start1 += diff_text.length
                        if (diff_type == Operation.EQUAL) {
                            patch.length2 += diff_text.length
                            start2 += diff_text.length
                        } else {
                            empty = false
                        }
                        patch.diffs.add(Diff(diff_type, diff_text))
                        if ((diff_text == bigpatch.diffs.first.text)) {
                            bigpatch.diffs.removeFirst()
                        } else {
                            bigpatch.diffs.first.text = bigpatch.diffs.first.text!!
                                .substring(diff_text.length)
                        }
                    }
                }
                // Compute the head context for the next patch.
                precontext = diff_text2(patch.diffs)
                precontext = precontext.substring(
                    max(
                        0.0, (precontext.length
                                - Patch_Margin).toDouble()
                    ).toInt()
                )
                // Append the end context for this patch.
                if (diff_text1(bigpatch.diffs).length > Patch_Margin) {
                    postcontext = diff_text1(bigpatch.diffs).substring(0, Patch_Margin.toInt())
                } else {
                    postcontext = diff_text1(bigpatch.diffs)
                }
                if (postcontext.length != 0) {
                    patch.length1 += postcontext.length
                    patch.length2 += postcontext.length
                    if ((!patch.diffs.isEmpty()
                                && patch.diffs.last.operation == Operation.EQUAL)
                    ) {
                        patch.diffs.last.text += postcontext
                    } else {
                        patch.diffs.add(Diff(Operation.EQUAL, postcontext))
                    }
                }
                if (!empty) {
                    pointer.add(patch)
                }
            }
            bigpatch = if (pointer.hasNext()) pointer.next() else null
        }
    }

    /**
     * Take a list of patches and return a textual representation.
     * @param patches List of Patch objects.
     * @return Text representation of patches.
     */
    fun patch_toText(patches: List): String {
        val text = StringBuilder()
        for (aPatch: Patch? in patches) {
            text.append(aPatch)
        }
        return text.toString()
    }

    /**
     * Parse a textual representation of patches and return a List of Patch
     * objects.
     * @param textline Text representation of patches.
     * @return List of Patch objects.
     * @throws IllegalArgumentException If invalid input.
     */
    @Throws(IllegalArgumentException::class)
    fun patch_fromText(textline: String): List {
        val patches: MutableList = LinkedList()
        if (textline.length == 0) {
            return patches
        }
        val textList = Arrays.asList(*textline.split("\n".toRegex()).dropLastWhile { it.isEmpty() }
            .toTypedArray())
        val text = LinkedList(textList)
        var patch: Patch
        val patchHeader = Pattern.compile("^@@ -(\\d+),?(\\d*) \\+(\\d+),?(\\d*) @@$")
        var m: Matcher
        var sign: Char
        var line: String
        while (!text.isEmpty()) {
            m = patchHeader.matcher(text.first)
            if (!m.matches()) {
                throw IllegalArgumentException(
                    "Invalid patch string: " + text.first
                )
            }
            patch = Patch()
            patches.add(patch)
            patch.start1 = m.group(1).toInt()
            if (m.group(2).length == 0) {
                patch.start1--
                patch.length1 = 1
            } else if ((m.group(2) == "0")) {
                patch.length1 = 0
            } else {
                patch.start1--
                patch.length1 = m.group(2).toInt()
            }

            patch.start2 = m.group(3).toInt()
            if (m.group(4).length == 0) {
                patch.start2--
                patch.length2 = 1
            } else if ((m.group(4) == "0")) {
                patch.length2 = 0
            } else {
                patch.start2--
                patch.length2 = m.group(4).toInt()
            }
            text.removeFirst()

            while (!text.isEmpty()) {
                try {
                    sign = text.first[0]
                } catch (e: IndexOutOfBoundsException) {
                    // Blank line?  Whatever.
                    text.removeFirst()
                    continue
                }
                line = text.first.substring(1)
                line = line.replace("+", "%2B") // decode would change all "+" to " "
                try {
                    line = URLDecoder.decode(line, "UTF-8")
                } catch (e: UnsupportedEncodingException) {
                    // Not likely on modern system.
                    throw Error("This system does not support UTF-8.", e)
                } catch (e: IllegalArgumentException) {
                    // Malformed URI sequence.
                    throw IllegalArgumentException(
                        "Illegal escape in patch_fromText: $line", e
                    )
                }
                if (sign == '-') {
                    // Deletion.
                    patch.diffs.add(Diff(Operation.DELETE, line))
                } else if (sign == '+') {
                    // Insertion.
                    patch.diffs.add(Diff(Operation.INSERT, line))
                } else if (sign == ' ') {
                    // Minor equality.
                    patch.diffs.add(Diff(Operation.EQUAL, line))
                } else if (sign == '@') {
                    // Start of next patch.
                    break
                } else {
                    // WTF?
                    throw IllegalArgumentException(
                        "Invalid patch mode '$sign' in: $line"
                    )
                }
                text.removeFirst()
            }
        }
        return patches
    }


    /**
     * Class representing one diff operation.
     */
    class Diff// Construct a diff with the specified operation and text.
    /**
     * Constructor.  Initializes the diff with the provided values.
     * @param operation One of INSERT, DELETE or EQUAL.
     * @param text The text being applied.
     */(
        /**
         * One of: INSERT, DELETE or EQUAL.
         */
        var operation: Operation?,
        /**
         * The text associated with this diff operation.
         */
        var text: String?
    ) {
        /**
         * Display a human-readable version of this Diff.
         * @return text version.
         */
        override fun toString(): String {
            val prettyText = text!!.replace('\n', '\u00b6')
            return "Diff(" + this.operation + ",\"" + prettyText + "\")"
        }

        /**
         * Create a numeric hash value for a Diff.
         * This function is not used by DMP.
         * @return Hash value.
         */
        override fun hashCode(): Int {
            val prime = 31
            var result = if ((operation == null)) 0 else operation.hashCode()
            result += prime * (if ((text == null)) 0 else text.hashCode())
            return result
        }

        /**
         * Is this Diff equivalent to another Diff?
         * @param obj Another Diff to compare against.
         * @return true or false.
         */
        override fun equals(obj: Any?): Boolean {
            if (this === obj) {
                return true
            }
            if (obj == null) {
                return false
            }
            if (javaClass != obj.javaClass) {
                return false
            }
            val other = obj as Diff
            if (operation != other.operation) {
                return false
            }
            if (text == null) {
                if (other.text != null) {
                    return false
                }
            } else if (text != other.text) {
                return false
            }
            return true
        }
    }


    /**
     * Class representing one patch operation.
     */
    class Patch {
        var diffs: LinkedList
        var start1: Int = 0
        var start2: Int = 0
        var length1: Int = 0
        var length2: Int = 0

        /**
         * Constructor.  Initializes with an empty list of diffs.
         */
        init {
            this.diffs = LinkedList()
        }

        /**
         * Emulate GNU diff's format.
         * Header: @@ -382,8 +481,9 @@
         * Indices are printed as 1-based, not 0-based.
         * @return The GNU diff string.
         */
        override fun toString(): String {
            val coords1: String
            val coords2: String
            if (this.length1 == 0) {
                coords1 = start1.toString() + ",0"
            } else if (this.length1 == 1) {
                coords1 = (this.start1 + 1).toString()
            } else {
                coords1 = (this.start1 + 1).toString() + "," + this.length1
            }
            if (this.length2 == 0) {
                coords2 = start2.toString() + ",0"
            } else if (this.length2 == 1) {
                coords2 = (this.start2 + 1).toString()
            } else {
                coords2 = (this.start2 + 1).toString() + "," + this.length2
            }
            val text = StringBuilder()
            text.append("@@ -").append(coords1).append(" +").append(coords2)
                .append(" @@\n")
            // Escape the body of the patch with %xx notation.
            for (aDiff: Diff in this.diffs) {
                when (aDiff.operation) {
                    Operation.INSERT -> text.append('+')
                    Operation.DELETE -> text.append('-')
                    Operation.EQUAL -> text.append(' ')
                    null -> TODO()
                }
                try {
                    text.append(URLEncoder.encode(aDiff.text, "UTF-8").replace('+', ' '))
                        .append("\n")
                } catch (e: UnsupportedEncodingException) {
                    // Not likely on modern system.
                    throw Error("This system does not support UTF-8.", e)
                }
            }
            return unescapeForEncodeUriCompatability(text.toString())
        }
    }

    companion object : DiffMatchPatch() {
        /**
         * Unescape selected chars for compatability with JavaScript's encodeURI.
         * In speed critical applications this could be dropped since the
         * receiving application will certainly decode these fine.
         * Note that this function is case-sensitive.  Thus "%3f" would not be
         * unescaped.  But this is ok because it is only called with the output of
         * URLEncoder.encode which returns uppercase hex.
         *
         * Example: "%3F" -> "?", "%24" -> "$", etc.
         *
         * @param str The string to escape.
         * @return The escaped string.
         */
        private fun unescapeForEncodeUriCompatability(str: String): String {
            return str.replace("%21", "!").replace("%7E", "~")
                .replace("%27", "'").replace("%28", "(").replace("%29", ")")
                .replace("%3B", ";").replace("%2F", "/").replace("%3F", "?")
                .replace("%3A", ":").replace("%40", "@").replace("%26", "&")
                .replace("%3D", "=").replace("%2B", "+").replace("%24", "$")
                .replace("%2C", ",").replace("%23", "#")
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy