
com.simiacryptus.mindseye.art.examples.BigTexture.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2020 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.art.examples
import java.net.URI
import com.simiacryptus.mindseye.art.models.VGG19
import com.simiacryptus.mindseye.art.ops._
import com.simiacryptus.mindseye.art.util.ArtSetup.{ec2client, s3client}
import com.simiacryptus.mindseye.art.util.ImageArtUtil._
import com.simiacryptus.mindseye.art.util.{BasicOptimizer, _}
import com.simiacryptus.mindseye.lang.Tensor
import com.simiacryptus.mindseye.layers.java.AffineImgViewLayer
import com.simiacryptus.notebook.NotebookOutput
import com.simiacryptus.ref.wrappers.RefAtomicReference
import com.simiacryptus.sparkbook.NotebookRunner
import com.simiacryptus.sparkbook.NotebookRunner.withMonitoredJpg
import com.simiacryptus.sparkbook.util.Java8Util._
import com.simiacryptus.sparkbook.util.LocalRunner
object BigTexture extends BigTexture with LocalRunner[Object] with NotebookRunner[Object]
class BigTexture extends ArtSetup[Object] {
val styleUrl = "upload:Style"
val initUrl: String = "plasma"
val s3bucket: String = "test.deepartist.org"
val aspectRatio = 0.5774
override def indexStr = "201"
override def description =
Creates a large texture based on a style using:
- Random plasma initialization
- Standard VGG19 layers
- Operators constraining and enhancing style
- Progressive resolution increase
- View layer to enforce tiling
.toString.trim
override def inputTimeoutSeconds = 3600
override def postConfigure(log: NotebookOutput) = log.eval { () =>
() => {
implicit val implicitLog = log
// First, basic configuration so we publish to our s3 site
if (Option(s3bucket).filter(!_.isEmpty).isDefined)
log.setArchiveHome(URI.create(s"s3://$s3bucket/$className/${log.getId}/"))
log.onComplete(() => upload(log): Unit)
// Fetch image (user upload prompt) and display a rescaled copy
loadImages(log, styleUrl, 1200).foreach(img => log.p(log.jpg(img, "Input Style")))
val canvas = new RefAtomicReference[Tensor](null)
// Tiling layer used by the optimization engine.
// Expands the canvas by a small amount, using tile wrap to draw in the expanded boundary.
val min_padding = 64
val max_padding = 256
val border_factor = 1.0
def viewLayer(dims: Seq[Int]) = {
val paddingX = Math.min(max_padding, Math.max(min_padding, dims(0) * border_factor)).toInt
val paddingY = Math.min(max_padding, Math.max(min_padding, dims(1) * border_factor)).toInt
val layer = new AffineImgViewLayer(dims(0) + paddingX, dims(1) + paddingY, true)
layer.setOffsetX(-paddingX / 2)
layer.setOffsetY(-paddingY / 2)
List(layer)
}
// Execute the main process while registered with the site index
val registration = registerWithIndexJPG(() => canvas.get())
try {
withMonitoredJpg(() => Option(canvas.get()).map(tensor => {
val image = tensor.toRgbImage
tensor.freeRef()
image
}).orNull) {
paint(
contentUrl = initUrl,
initUrl = initUrl,
canvas = canvas.addRef(),
network = new VisualStyleNetwork(
styleLayers = List(
// We select all the lower-level layers to achieve a good balance between speed and accuracy.
VGG19.VGG19_0b,
VGG19.VGG19_1a,
VGG19.VGG19_1b1,
VGG19.VGG19_1b2,
VGG19.VGG19_1c1,
VGG19.VGG19_1c2,
VGG19.VGG19_1c3,
VGG19.VGG19_1c4,
VGG19.VGG19_1d1,
VGG19.VGG19_1d2,
VGG19.VGG19_1d3,
VGG19.VGG19_1d4
),
styleModifiers = List(
// These two operators are a good combination for a vivid yet accurate style
new GramMatrixEnhancer().setMinMax(-5, 5).scale(5),
new MomentMatcher()
),
styleUrls = Seq(styleUrl),
magnification = Array(1.0),
viewLayer = viewLayer
),
optimizer = new BasicOptimizer {
override val trainingMinutes: Int = 60
override val trainingIterations: Int = 20
override val maxRate = 1e9
},
aspect = Option(aspectRatio),
resolutions = new GeometricSequence {
override val min: Double = 200
override val max: Double = 800
override val steps = 3
}.toStream.map(_.round.toDouble)
)
paint(
contentUrl = initUrl,
initUrl = initUrl,
canvas = canvas.addRef(),
network = new VisualStyleNetwork(
styleLayers = List(
// We select all the lower-level layers to achieve a good balance between speed and accuracy.
VGG19.VGG19_1b1,
VGG19.VGG19_1b2,
VGG19.VGG19_1c1,
VGG19.VGG19_1c2,
VGG19.VGG19_1c3,
VGG19.VGG19_1c4
),
styleModifiers = List(
new GramMatrixEnhancer().setMinMax(-5, 5).scale(5),
new GramMatrixMatcher()
),
styleUrls = Seq(styleUrl),
magnification = Array(1.0),
viewLayer = viewLayer
),
optimizer = new BasicOptimizer {
override val trainingMinutes: Int = 90
override val trainingIterations: Int = 10
override val maxRate = 1e9
},
aspect = Option(aspectRatio),
resolutions = new GeometricSequence {
override val min: Double = 1200
override val max: Double = 4000
override val steps = 3
}.toStream.map(_.round.toDouble)
)
}
null
} finally {
registration.foreach(_.stop()(s3client, ec2client))
canvas.freeRef()
}
}
}()
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy