com.simiacryptus.mindseye.layers.aparapi.ConvolveKernel Maven / Gradle / Ivy
/*
* Copyright (c) 2018 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.aparapi;
import com.aparapi.Kernel;
import com.aparapi.device.Device;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
/**
* The type Convolve kernel.
*/
public final class ConvolveKernel extends Kernel {
/**
* The Input.
*/
@Nullable
public double[] input;
/**
* The Input size.
*/
@Nullable
public int[] inputSize;
/**
* The Kernel offset.
*/
public int[] kernelOffset;
/**
* The Kernel size.
*/
@Nullable
public int[] kernelSize;
/**
* The Output.
*/
@Nullable
public double[] output;
/**
* The Output size.
*/
@Nullable
public int[] outputSize;
/**
* The Weights.
*/
@Nullable
public double[] weights;
/**
* Instantiates a new Convolve kernel.
*/
public ConvolveKernel() {
}
/**
* Exe.
*
* @param device the device
*/
public void exe(@Nonnull final Device device) {
//assert this.outputSize[0] * this.outputSize[1] * this.outputSize[2] == this.output.length;
//assert this.inputSize[0] * this.inputSize[1] * this.inputSize[2] == this.input.length;
assert null != kernelSize;
assert null != weights;
assert kernelSize[0] * kernelSize[1] * kernelSize[2] == weights.length;
execute(device.createRange(output.length));
}
@Override
public void run() {
final int i = getGlobalId();
final int os0 = outputSize[0];
final int os1 = os0 * outputSize[1];
final int os2 = os1 * outputSize[2];
final int batch = i / os2;
final int o2 = i % os2 / os1;
final int o1 = i % os1 / os0;
final int o0 = i % os0;
double accum = 0;
for (int k = 0; k < weights.length; k++) {
if (0. != weights[k]) {
final int ks0 = kernelSize[0];
final int ks1 = ks0 * kernelSize[1];
final int ks2 = ks1 * kernelSize[2];
final int k2 = k % ks2 / ks1;
final int k1 = k % ks1 / ks0;
final int k0 = k % ks0;
final int x = k2 - o2;
if (x >= 0 && 0 == x % outputSize[2]) {
final int i2 = x / outputSize[2];
if (i2 >= 0 && i2 < inputSize[2]) {
final int i0 = o0 - k0 + kernelOffset[0];
final int i1 = o1 - k1 + kernelOffset[1];
if (i0 >= 0 && i1 >= 0 && i1 < inputSize[1] && i0 < inputSize[0]) {
final int i11 = i0 + inputSize[0] * (i1 + inputSize[1] * (i2 + inputSize[2] * batch));
accum += input[i11] * weights[k];
}
}
}
}
}
output[i] = accum;
}
} © 2015 - 2025 Weber Informatics LLC | Privacy Policy