com.simiacryptus.mindseye.layers.aparapi.ConvolveKernel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-aparapi Show documentation
Show all versions of mindseye-aparapi Show documentation
OpenCL Neural Network Components Implemented Using Aparapi
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.aparapi;
import com.aparapi.Kernel;
import com.aparapi.Range;
import javax.annotation.Nullable;
public final class ConvolveKernel extends Kernel {
@Nullable
public double[] input;
@Nullable
public int[] inputSize;
public int[] kernelOffset;
@Nullable
public int[] kernelSize;
@Nullable
public double[] output;
@Nullable
public int[] outputSize;
@Nullable
public double[] weights;
public ConvolveKernel() {
super();
}
public void exe() {
assert null != kernelSize;
assert null != weights;
assert kernelSize[0] * kernelSize[1] * kernelSize[2] == weights.length;
assert output != null;
execute(Range.create(output.length, 1));
}
@Override
public void run() {
final int i = getGlobalId();
assert outputSize != null;
final int os0 = outputSize[0];
final int os1 = os0 * outputSize[1];
final int os2 = os1 * outputSize[2];
final int batch = i / os2;
final int o2 = i % os2 / os1;
final int o1 = i % os1 / os0;
final int o0 = i % os0;
double accum = 0;
assert weights != null;
for (int k = 0; k < weights.length; k++) {
if (0. != weights[k]) {
assert kernelSize != null;
final int ks0 = kernelSize[0];
final int ks1 = ks0 * kernelSize[1];
final int ks2 = ks1 * kernelSize[2];
final int k2 = k % ks2 / ks1;
final int k1 = k % ks1 / ks0;
final int k0 = k % ks0;
final int x = k2 - o2;
if (x >= 0 && 0 == x % outputSize[2]) {
final int i2 = x / outputSize[2];
assert inputSize != null;
if (i2 >= 0 && i2 < inputSize[2]) {
final int i0 = o0 - k0 + kernelOffset[0];
final int i1 = o1 - k1 + kernelOffset[1];
if (i0 >= 0 && i1 >= 0 && i1 < inputSize[1] && i0 < inputSize[0]) {
final int i11 = i0 + inputSize[0] * (i1 + inputSize[1] * (i2 + inputSize[2] * batch));
assert input != null;
accum += input[i11] * weights[k];
}
}
}
}
}
assert output != null;
output[i] = accum;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy