com.simiacryptus.mindseye.texture_generation.Enlarging Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-art Show documentation
Show all versions of mindseye-art Show documentation
Visual Neural Network Applications
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.texture_generation;
import com.simiacryptus.aws.exe.EC2NotebookRunner;
import com.simiacryptus.aws.exe.LocalNotebookRunner;
import com.simiacryptus.mindseye.ImageScript;
import com.simiacryptus.mindseye.applications.ArtistryUtil;
import com.simiacryptus.mindseye.applications.TextureGeneration;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.lang.cudnn.Precision;
import com.simiacryptus.mindseye.models.CVPipe_VGG19;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import com.simiacryptus.mindseye.test.TestUtil;
import com.simiacryptus.notebook.NotebookOutput;
import javax.annotation.Nonnull;
import java.awt.image.BufferedImage;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import java.util.stream.DoubleStream;
/**
* The type Enlarging.
*/
public class Enlarging extends ImageScript {
/**
* The Start png size.
*/
public int startImageSize = 200;
/**
* The Coeff style mean.
*/
public double coeff_style_mean = 1e1;
/**
* The Coeff style bandCovariance.
*/
public double coeff_style_cov = 1e0;
/**
* The Style sources.
*/
public String[] styleSources = {
"git://github.com/jcjohnson/fast-neural-style.git/master/images/styles/starry_night_crop.jpg"
};
/**
* Init buffered png.
*
* @param width the width
* @return the buffered png
*/
@Nonnull
public BufferedImage init(final int width) {
return ArtistryUtil.paint_Plasma(3, 1000.0, 1.1, width).toImage();
}
/**
* Resolution stream double stream.
*
* @return the double stream
*/
public DoubleStream resolutionStream() {
return TestUtil.geometricStream(startImageSize, 800, 4).get();
}
public void accept(@Nonnull NotebookOutput log) {
TextureGeneration.VGG19 textureGeneration = new TextureGeneration.VGG19();
Precision precision = Precision.Float;
textureGeneration.parallelLossFunctions = true;
textureGeneration.setTiling(3);
log.p("Style Source:");
for (final CharSequence styleSource : styleSources) {
log.p(log.png(ArtistryUtil.load(styleSource, startImageSize), "Style Image"));
}
double dreamCoeff = 1e1;
final Map, TextureGeneration.StyleCoefficients> styles = TestUtil.buildMap(x ->
x.put(
Arrays.asList(styleSources),
new TextureGeneration.StyleCoefficients(
TextureGeneration.CenteringMode.Origin)
.set(CVPipe_VGG19.Layer.Layer_0, coeff_style_mean, coeff_style_cov, dreamCoeff)
.set(CVPipe_VGG19.Layer.Layer_1a, coeff_style_mean, coeff_style_cov, dreamCoeff)
.set(CVPipe_VGG19.Layer.Layer_1b, coeff_style_mean, coeff_style_cov, dreamCoeff)
.set(CVPipe_VGG19.Layer.Layer_1c, coeff_style_mean, coeff_style_cov, dreamCoeff)
));
Tensor canvasImage = null;
for (final double resolution : resolutionStream().toArray()) {
int size = (int) resolution;
if (null == canvasImage) {
canvasImage = Tensor.fromRGB(init(size));
} else {
canvasImage = Tensor.fromRGB(TestUtil.resize(canvasImage.toImage(), size, true));
}
TextureGeneration.StyleSetup styleSetup = new TextureGeneration.StyleSetup(precision,
TestUtil.buildMap(y -> y.putAll(styles.keySet().stream().flatMap(x1 -> x1.stream())
.collect(Collectors.toMap(x1 -> x1, file -> ArtistryUtil.load(file, size))))), styles);
log.p("Input Parameters:");
log.eval(() -> {
return ArtistryUtil.toJson(styleSetup);
});
PipelineNetwork network = textureGeneration.fitnessNetwork(textureGeneration.measureStyle(styleSetup));
canvasImage = TextureGeneration.optimize(
log,
network,
canvasImage,
getTrainingMinutes(),
getMaxIterations(),
isVerbose(),
styleSetup.precision,
textureGeneration.getTiling()
);
}
}
/**
* The type Local.
*/
public static class Local {
/**
* The entry point of application.
*
* @param args the input arguments
* @throws Exception the exception
*/
public static void main(String... args) throws Exception {
LocalNotebookRunner.run(LocalNotebookRunner.getTask(Enlarging.class));
}
}
/**
* The type Ec 2.
*/
public static class EC2 {
/**
* The entry point of application.
*
* @param args the input arguments
* @throws Exception the exception
*/
public static void main(String... args) throws Exception {
EC2NotebookRunner.run(LocalNotebookRunner.getTask(Enlarging.class));
}
}
}