com.simiacryptus.mindseye.art.SumTrainable Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.art;
import com.simiacryptus.lang.ref.ReferenceCounting;
import com.simiacryptus.lang.ref.ReferenceCountingBase;
import com.simiacryptus.mindseye.eval.Trainable;
import com.simiacryptus.mindseye.lang.DeltaSet;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.PointSample;
import com.simiacryptus.mindseye.lang.StateSet;
import com.simiacryptus.mindseye.opt.TrainingMonitor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Arrays;
import java.util.List;
import java.util.UUID;
import java.util.stream.Collectors;
/**
* The type Tiled trainable.
*/
public class SumTrainable extends ReferenceCountingBase implements Trainable {
private static final Logger logger = LoggerFactory.getLogger(SumTrainable.class);
private final Trainable[] inner;
public SumTrainable(Trainable... inner) {
this.inner = inner;
}
@Override
public PointSample measure(final TrainingMonitor monitor) {
List results = Arrays.stream(inner).map(x -> x.measure(monitor)).collect(Collectors.toList());
DeltaSet delta = results.stream().map(x -> x.delta.addRef()).reduce((a, b) -> {
DeltaSet c = a.addInPlace(b);
b.freeRef();
return c;
}).get();
StateSet weights = results.stream().map(x -> x.weights.addRef()).reduce((a, b) -> {
StateSet c = StateSet.union(a, b);
a.freeRef();
b.freeRef();
return c;
}).get();
double mean = results.stream().mapToDouble(x -> x.getMean()).sum();
double rate = results.stream().mapToDouble(x -> x.getRate()).average().getAsDouble();
int sum = results.stream().mapToInt(x -> x.count).sum();
results.forEach(ReferenceCountingBase::freeRef);
return new PointSample(delta, weights, mean, rate, sum);
}
@Override
public Layer getLayer() {
return null;
}
@Override
protected void _free() {
if (null != inner) Arrays.stream(inner).forEach(ReferenceCounting::freeRef);
super._free();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy