com.simiacryptus.mindseye.art.ops.ChannelMeanMatcher Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.art.ops;
import com.simiacryptus.mindseye.art.VisualModifier;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.layers.cudnn.*;
import com.simiacryptus.mindseye.layers.java.LinearActivationLayer;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import org.jetbrains.annotations.NotNull;
import java.util.Arrays;
public class ChannelMeanMatcher implements VisualModifier {
private boolean balanced = true;
private boolean averaging = true;
@Override
public PipelineNetwork build(PipelineNetwork network, Tensor... image) {
Tensor meanSignal = null;
return buildWithModel(network, meanSignal, image);
}
@NotNull
public PipelineNetwork buildWithModel(PipelineNetwork network, Tensor meanSignal, Tensor... image) {
network = network.copyPipeline();
network.wrap(new BandAvgReducerLayer()).freeRef();
if (meanSignal == null) meanSignal = channelMeans(network, image);
double mag = isBalanced() ? meanSignal.rms() : 1;
network.wrap(PipelineNetwork.wrap(1,
new ImgBandBiasLayer(meanSignal.scaleInPlace(-1)),
new SquareActivationLayer(),
isAveraging() ? new AvgReducerLayer() : new SumReducerLayer(),
new LinearActivationLayer().setScale(Math.pow(mag, -2))
// ,new NthPowerActivationLayer().setPower(0.5)
).setName(String.format("RMS[x-C] / %.0E", mag))).freeRef();
return (PipelineNetwork) network.freeze();
}
@NotNull
private Tensor channelMeans(PipelineNetwork finalNetwork, Tensor... image) {
return Arrays.stream(image).map(tensor ->
finalNetwork.eval(tensor).getDataAndFree().getAndFree(0)
).reduce((a, b) -> {
Tensor c = a.addAndFree(b);
b.freeRef();
return c;
}).get().scaleInPlace(1.0 / image.length);
}
public boolean isBalanced() {
return balanced;
}
public ChannelMeanMatcher setBalanced(boolean balanced) {
this.balanced = balanced;
return this;
}
public boolean isAveraging() {
return averaging;
}
public ChannelMeanMatcher setAveraging(boolean averaging) {
this.averaging = averaging;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy