com.simiacryptus.mindseye.art.ops.ContentInceptionMatcher Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.art.ops;
import com.simiacryptus.mindseye.art.VisualModifier;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.layers.cudnn.*;
import com.simiacryptus.mindseye.layers.cudnn.conv.ConvolutionLayer;
import com.simiacryptus.mindseye.layers.java.BoundedActivationLayer;
import com.simiacryptus.mindseye.layers.java.NthPowerActivationLayer;
import com.simiacryptus.mindseye.network.PipelineNetwork;
public class ContentInceptionMatcher implements VisualModifier {
private int minValue = -1;
private int maxValue = 1;
private boolean averaging = true;
private boolean balanced = true;
@Override
public PipelineNetwork build(PipelineNetwork network, Tensor... image) {
network = network.copyPipeline();
Tensor baseContent = network.eval(image).getDataAndFree().getAndFree(0);
BandAvgReducerLayer bandAvgReducerLayer = new BandAvgReducerLayer();
Tensor bandAvg = bandAvgReducerLayer.eval(baseContent).getDataAndFree().getAndFree(0);
ImgBandBiasLayer offsetLayer = new ImgBandBiasLayer(bandAvg.scale(-1));
Tensor bandPowers = PipelineNetwork.wrap(1,
offsetLayer,
new SquareActivationLayer(),
bandAvgReducerLayer,
new NthPowerActivationLayer().setPower(0.5)
).eval(baseContent).getDataAndFree().getAndFree(0);
int[] contentDimensions = baseContent.getDimensions();
Layer colorProjection = new ConvolutionLayer(1, 1, contentDimensions[2], 1)
.setPaddingXY(0, 0)
.setAndFree(bandPowers.unit())
.explodeAndFree();
Tensor spacialPattern = colorProjection.eval(baseContent).getDataAndFree().getAndFree(0);
double mag = balanced ? spacialPattern.rms() : 1;
network.wrap(colorProjection);
network.wrap(new ConvolutionLayer(contentDimensions[0], contentDimensions[1], 1, 1)
.setAndFree(spacialPattern.scaleInPlace(Math.pow(spacialPattern.rms(), -2))).explodeAndFree()).freeRef();
network.wrap(PipelineNetwork.wrap(1,
new BoundedActivationLayer().setMinValue(getMinValue()).setMaxValue(getMaxValue()),
new SquareActivationLayer(),
isAveraging() ? new AvgReducerLayer() : new SumReducerLayer()
// ,new NthPowerActivationLayer().setPower(0.5)
).setName(String.format("-RMS / %.0E", mag))).freeRef();
return (PipelineNetwork) network.freeze();
}
public boolean isAveraging() {
return averaging;
}
public ContentInceptionMatcher setAveraging(boolean averaging) {
this.averaging = averaging;
return this;
}
public boolean isBalanced() {
return balanced;
}
public ContentInceptionMatcher setBalanced(boolean balanced) {
this.balanced = balanced;
return this;
}
public int getMinValue() {
return minValue;
}
public ContentInceptionMatcher setMinValue(int minValue) {
this.minValue = minValue;
return this;
}
public int getMaxValue() {
return maxValue;
}
public ContentInceptionMatcher setMaxValue(int maxValue) {
this.maxValue = maxValue;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy