com.simiacryptus.mindseye.art.ops.GramMatrixMatcher Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.art.ops;
import com.simiacryptus.mindseye.art.TiledTrainable;
import com.simiacryptus.mindseye.art.VisualModifier;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.lang.cudnn.CudaSettings;
import com.simiacryptus.mindseye.lang.cudnn.MultiPrecision;
import com.simiacryptus.mindseye.lang.cudnn.Precision;
import com.simiacryptus.mindseye.layers.cudnn.*;
import com.simiacryptus.mindseye.layers.java.LinearActivationLayer;
import com.simiacryptus.mindseye.network.DAGNode;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Arrays;
import java.util.UUID;
public class GramMatrixMatcher implements VisualModifier {
private static final Logger log = LoggerFactory.getLogger(GramMatrixMatcher.class);
private final Precision precision = Precision.Float;
private boolean averaging = true;
private boolean balanced = true;
private int tileSize = 600;
@NotNull
public static Layer loss(Tensor result, double mag, boolean averaging) {
Layer layer = PipelineNetwork.wrap(1,
new ImgBandBiasLayer(result.scaleInPlace(-1)),
new SquareActivationLayer(),
averaging ? new AvgReducerLayer() : new SumReducerLayer(),
new LinearActivationLayer().setScale(Math.pow(mag, -2))
//new NthPowerActivationLayer().setPower(0.5),
).setName(String.format("RMS[x-C] / %.0E", mag));
result.freeRef();
return layer;
}
public static Tensor eval(int pixels, PipelineNetwork network, int tileSize, Tensor... image) {
return Arrays.stream(image).flatMap(img -> {
int[] imageDimensions = img.getDimensions();
return Arrays.stream(TiledTrainable.selectors(0, imageDimensions[0], imageDimensions[1], tileSize, CudaSettings.INSTANCE().defaultPrecision))
.map(s -> s.getCompatibilityLayer())
.map(selector -> {
//log.info(selector.toString());
Tensor tile = selector.eval(img).getDataAndFree().getAndFree(0);
selector.freeRef();
int[] tileDimensions = tile.getDimensions();
Tensor component = network.eval(tile).getDataAndFree().getAndFree(0).scaleInPlace(tileDimensions[0] * tileDimensions[1]);
tile.freeRef();
return component;
});
}).reduce((a, b) -> {
a.addInPlace(b);
b.freeRef();
return a;
}).get().scaleInPlace(1.0 / pixels).mapAndFree(x -> {
if (Double.isFinite(x)) {
return x;
} else {
return 0;
}
});
}
@NotNull
public static UUID getAppendUUID(PipelineNetwork network, Class layerClass) {
DAGNode head = network.getHead();
Layer layer = head.getLayer();
if (null == layer) return UUID.randomUUID();
return UUID.nameUUIDFromBytes((layer.getId().toString() + layerClass.getName()).getBytes());
}
@Override
public PipelineNetwork build(PipelineNetwork network, Tensor... image) {
return buildWithModel(network, null, image);
}
@NotNull
public PipelineNetwork buildWithModel(PipelineNetwork network, Tensor model, Tensor... image) {
network = (PipelineNetwork) MultiPrecision.setPrecision(network.copyPipeline(), precision);
network.wrap(new GramianLayer(getAppendUUID(network, GramianLayer.class)).setPrecision(precision)).freeRef();
int pixels = Arrays.stream(image).mapToInt(x -> {
int[] dimensions = x.getDimensions();
return dimensions[0] * dimensions[1];
}).sum();
if(null == model) model = eval(pixels==0?1:pixels, network, getTileSize(), image);
double mag = balanced ? model.rms() : 1;
network.wrap(loss(model, mag, isAveraging())).freeRef();
return (PipelineNetwork) network.freeze();
}
public boolean isAveraging() {
return averaging;
}
public GramMatrixMatcher setAveraging(boolean averaging) {
this.averaging = averaging;
return this;
}
public boolean isBalanced() {
return balanced;
}
public GramMatrixMatcher setBalanced(boolean balanced) {
this.balanced = balanced;
return this;
}
public int getTileSize() {
return tileSize;
}
public GramMatrixMatcher setTileSize(int tileSize) {
this.tileSize = tileSize;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy