com.simiacryptus.mindseye.art.ops.ContentInceptionMatcher Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.art.ops;
import com.simiacryptus.mindseye.art.VisualModifier;
import com.simiacryptus.mindseye.art.VisualModifierParameters;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.Result;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.layers.cudnn.*;
import com.simiacryptus.mindseye.layers.cudnn.conv.ConvolutionLayer;
import com.simiacryptus.mindseye.layers.java.BoundedActivationLayer;
import com.simiacryptus.mindseye.layers.java.NthPowerActivationLayer;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import com.simiacryptus.ref.wrappers.RefString;
import javax.annotation.Nonnull;
public class ContentInceptionMatcher implements VisualModifier {
private int minValue = -1;
private int maxValue = 1;
private boolean averaging = true;
private boolean balanced = true;
public int getMaxValue() {
return maxValue;
}
@Nonnull
public ContentInceptionMatcher setMaxValue(int maxValue) {
this.maxValue = maxValue;
return this;
}
public int getMinValue() {
return minValue;
}
@Nonnull
public ContentInceptionMatcher setMinValue(int minValue) {
this.minValue = minValue;
return this;
}
public boolean isAveraging() {
return averaging;
}
@Nonnull
public ContentInceptionMatcher setAveraging(boolean averaging) {
this.averaging = averaging;
return this;
}
public boolean isBalanced() {
return balanced;
}
@Nonnull
public ContentInceptionMatcher setBalanced(boolean balanced) {
this.balanced = balanced;
return this;
}
@Nonnull
@Override
public PipelineNetwork build(@Nonnull VisualModifierParameters visualModifierParameters) {
PipelineNetwork network = visualModifierParameters.copyNetwork();
Tensor baseContent = Result.getData0(network.eval(visualModifierParameters.getStyle()));
visualModifierParameters.freeRef();
BandAvgReducerLayer bandAvgReducerLayer = new BandAvgReducerLayer();
Tensor bandAvg = Result.getData0(bandAvgReducerLayer.eval(baseContent.addRef()));
ImgBandBiasLayer offsetLayer = new ImgBandBiasLayer(bandAvg.scale(-1));
bandAvg.freeRef();
NthPowerActivationLayer nthPowerActivationLayer = new NthPowerActivationLayer();
nthPowerActivationLayer.setPower(0.5);
PipelineNetwork build = PipelineNetwork.build(1, offsetLayer, new SquareActivationLayer(), bandAvgReducerLayer,
nthPowerActivationLayer);
Tensor bandPowers = Result.getData0(build.eval(baseContent.addRef()));
build.freeRef();
int[] contentDimensions = baseContent.getDimensions();
ConvolutionLayer convolutionLayer2 = new ConvolutionLayer(1, 1, contentDimensions[2], 1);
convolutionLayer2.setPaddingXY(0, 0);
convolutionLayer2.set(bandPowers.unit());
bandPowers.freeRef();
Layer colorProjection = convolutionLayer2.explode();
convolutionLayer2.freeRef();
Tensor spacialPattern = Result.getData0(colorProjection.eval(baseContent));
double mag = balanced ? spacialPattern.rms() : 1;
network.add(colorProjection).freeRef();
spacialPattern.scaleInPlace(Math.pow(spacialPattern.rms(), -2));
ConvolutionLayer convolutionLayer = new ConvolutionLayer(contentDimensions[0], contentDimensions[1], 1, 1);
convolutionLayer.set(spacialPattern);
network.add(convolutionLayer.explode()).freeRef();
convolutionLayer.freeRef();
BoundedActivationLayer boundedActivationLayer1 = new BoundedActivationLayer();
boundedActivationLayer1.setMinValue(getMinValue());
boundedActivationLayer1.setMaxValue(getMaxValue());
final Layer[] layers = new Layer[]{
boundedActivationLayer1, new SquareActivationLayer(),
isAveraging() ? new AvgReducerLayer() : new SumReducerLayer()};
Layer layer = PipelineNetwork.build(1, layers);
layer.setName(RefString.format("-RMS / %.0E", mag));
network.add(layer).freeRef();
network.freeze();
return network;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy