com.simiacryptus.mindseye.art.ops.ContentPCAMatcher Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.art.ops;
import com.simiacryptus.mindseye.art.VisualModifier;
import com.simiacryptus.mindseye.art.VisualModifierParameters;
import com.simiacryptus.mindseye.art.util.PCA;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.Result;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.layers.ValueLayer;
import com.simiacryptus.mindseye.layers.cudnn.*;
import com.simiacryptus.mindseye.layers.cudnn.conv.ConvolutionLayer;
import com.simiacryptus.mindseye.layers.java.ImgBandScaleLayer;
import com.simiacryptus.mindseye.layers.java.LinearActivationLayer;
import com.simiacryptus.mindseye.network.DAGNode;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import com.simiacryptus.ref.wrappers.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
public class ContentPCAMatcher implements VisualModifier {
private static final Logger log = LoggerFactory.getLogger(ContentPCAMatcher.class);
private int minValue = -1;
private int maxValue = 1;
private boolean averaging = true;
private int bands = 16;
public int getBands() {
return bands;
}
public void setBands(int bands) {
this.bands = bands;
}
public int getMaxValue() {
return maxValue;
}
public void setMaxValue(int maxValue) {
this.maxValue = maxValue;
}
public int getMinValue() {
return minValue;
}
public void setMinValue(int minValue) {
this.minValue = minValue;
}
public boolean isAveraging() {
return averaging;
}
public void setAveraging(boolean averaging) {
this.averaging = averaging;
}
@Nonnull
@Override
public PipelineNetwork build(@Nonnull VisualModifierParameters visualModifierParameters) {
PipelineNetwork network = visualModifierParameters.copyNetwork();
Tensor baseContent = Result.getData0(network.eval(visualModifierParameters.getStyle()));
visualModifierParameters.freeRef();
int[] contentDimensions = baseContent.getDimensions();
RefList components;
PipelineNetwork signalProjection;
try {
PCA pca = new PCA().setRecenter(true).setRescale(false).setEigenvaluePower(0.0);
Tensor channelMeans = pca.getChannelMeans(baseContent.addRef());
Tensor channelRms = pca.getChannelRms(baseContent.addRef(), contentDimensions[2], channelMeans.addRef());
assert channelRms != null;
double[] covariance = PCA.bandCovariance(baseContent.getPixelStream(), PCA.countPixels(baseContent.addRef()),
channelMeans.getData(), channelRms.getData());
channelMeans.scaleInPlace(-1);
Tensor map = channelRms.map(x -> 1 / x);
channelRms.freeRef();
signalProjection = PipelineNetwork.build(1, new ImgBandBiasLayer(channelMeans),
new ImgBandScaleLayer(map.getData()));
map.freeRef();
RefList pca1 = PCA.pca(covariance, pca.getEigenvaluePower());
components = pca1.stream().collect(RefCollectors.toList());
pca1.freeRef();
} catch (Throwable e) {
log.info("Error processing PCA for dimensions " + RefArrays.toString(contentDimensions), e);
PipelineNetwork pipelineNetwork = new PipelineNetwork(1);
pipelineNetwork.add(new ValueLayer(new Tensor(0.0)), new DAGNode[]{}).freeRef();
return pipelineNetwork;
}
int bands = Math.min(getBands(), contentDimensions[2]);
Tensor prefixPattern = Result.getData0(signalProjection.eval(baseContent.addRef()));
ConvolutionLayer convolutionLayer2 = new ConvolutionLayer(1, 1, contentDimensions[2], bands);
convolutionLayer2.setPaddingXY(0, 0);
ConvolutionLayer convolutionLayer12 = getConvolutionLayer1(convolutionLayer2, components.addRef(), bands);
Layer explode1 = convolutionLayer12.explode();
convolutionLayer12.freeRef();
channelStats(Result.getData0(explode1.eval(prefixPattern.addRef())), bands);
explode1.freeRef();
ConvolutionLayer convolutionLayer1 = new ConvolutionLayer(1, 1, contentDimensions[2], bands);
convolutionLayer1.setPaddingXY(0, 0);
ConvolutionLayer convolutionLayer21 = getConvolutionLayer2(convolutionLayer1,
components.addRef(), bands);
Layer explode = convolutionLayer21.explode();
convolutionLayer21.freeRef();
channelStats(Result.getData0(explode.eval(prefixPattern)), bands);
explode.freeRef();
ConvolutionLayer convolutionLayer = new ConvolutionLayer(1, 1, contentDimensions[2], bands);
convolutionLayer.setPaddingXY(0, 0);
ConvolutionLayer convolutionLayer11 = getConvolutionLayer1(convolutionLayer, components, bands);
signalProjection.add(convolutionLayer11.explode()).freeRef();
convolutionLayer11.freeRef();
Tensor spacialPattern = Result.getData0(signalProjection.eval(baseContent));
channelStats(spacialPattern.addRef(), bands);
double mag = spacialPattern.rms();
DAGNode head = signalProjection.getHead();
spacialPattern.scaleInPlace(-1);
DAGNode constNode = signalProjection.constValueWrap(spacialPattern);
Layer layer1 = new SumInputsLayer();
layer1.setName("Difference");
signalProjection.add(layer1, head, constNode).freeRef();
LinearActivationLayer linearActivationLayer = new LinearActivationLayer();
linearActivationLayer.setScale(Math.pow(mag, -2));
Layer layer = PipelineNetwork.build(1,
new SquareActivationLayer(),
isAveraging() ? new AvgReducerLayer() : new SumReducerLayer(),
linearActivationLayer
);
layer.setName(RefString.format("RMS / %.0E", mag));
signalProjection.add(layer).freeRef();
signalProjection.setName(RefString.format("PCA Content Match"));
network.add(signalProjection).freeRef();
network.freeze();
return network;
}
public void channelStats(@Nonnull Tensor spacialPattern, int bands) {
double[] means = RefIntStream.range(0, bands).mapToDouble(band -> {
Tensor selectBand = spacialPattern.selectBand(band);
double mean = selectBand.mean();
selectBand.freeRef();
return mean;
}).toArray();
double[] stdDevs = RefIntStream.range(0, bands).mapToDouble(band -> {
Tensor bandPattern = spacialPattern.selectBand(band);
double sqrt = Math.sqrt(Math.pow(bandPattern.rms(), 2) - Math.pow(bandPattern.mean(), 2));
bandPattern.freeRef();
return sqrt;
}).toArray();
spacialPattern.freeRef();
log.info("Means: " + RefArrays.toString(means) + "; StdDev: " + RefArrays.toString(stdDevs));
}
@Nonnull
public ConvolutionLayer getConvolutionLayer1(@Nonnull ConvolutionLayer convolutionLayer, @Nonnull RefList components,
int stride) {
convolutionLayer.setByCoord(c -> {
int[] coords = c.getCoords();
Tensor tensor = components.get(coords[2] % stride);
double v = tensor.get(coords[2] / stride);
tensor.freeRef();
return v;
});
components.freeRef();
return convolutionLayer;
}
@Nonnull
public ConvolutionLayer getConvolutionLayer2(@Nonnull ConvolutionLayer convolutionLayer, @Nonnull RefList components,
int stride) {
convolutionLayer.setByCoord(c -> {
int[] coords = c.getCoords();
Tensor tensor = components.get(coords[2] / stride);
double v = tensor.get(coords[2] % stride);
tensor.freeRef();
return v;
});
components.freeRef();
return convolutionLayer;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy