com.simiacryptus.mindseye.art.ops.GramMatrixCenteredMatcher Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.art.ops;
import com.simiacryptus.mindseye.art.ArtSettings;
import com.simiacryptus.mindseye.art.TiledTrainable;
import com.simiacryptus.mindseye.art.VisualModifier;
import com.simiacryptus.mindseye.art.VisualModifierParameters;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.Result;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.lang.cudnn.MultiPrecision;
import com.simiacryptus.mindseye.lang.cudnn.Precision;
import com.simiacryptus.mindseye.layers.cudnn.*;
import com.simiacryptus.mindseye.layers.java.LinearActivationLayer;
import com.simiacryptus.mindseye.network.DAGNode;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefString;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.UUID;
import java.util.function.Function;
public class GramMatrixCenteredMatcher implements VisualModifier {
private static final Logger log = LoggerFactory.getLogger(GramMatrixCenteredMatcher.class);
private final Precision precision = Precision.Float;
private boolean averaging = true;
private boolean balanced = true;
private int tileSize = ArtSettings.INSTANCE().defaultTileSize;
public int getTileSize() {
return tileSize;
}
@Nonnull
public GramMatrixCenteredMatcher setTileSize(int tileSize) {
this.tileSize = tileSize;
return this;
}
public boolean isAveraging() {
return averaging;
}
@Nonnull
public GramMatrixCenteredMatcher setAveraging(boolean averaging) {
this.averaging = averaging;
return this;
}
public boolean isBalanced() {
return balanced;
}
@Nonnull
public GramMatrixCenteredMatcher setBalanced(boolean balanced) {
this.balanced = balanced;
return this;
}
@Nonnull
public static Layer loss(@Nonnull Tensor result, double mag, boolean averaging) {
result.scaleInPlace(-1);
LinearActivationLayer linearActivationLayer = new LinearActivationLayer();
linearActivationLayer.setScale(Math.pow(mag, -2));
Layer layer1 = PipelineNetwork.build(1,
new ImgBandBiasLayer(result),
new SquareActivationLayer(),
averaging ? new AvgReducerLayer() : new SumReducerLayer(),
linearActivationLayer);
layer1.setName(RefString.format("RMS[x-C] / %.0E", mag));
return layer1;
}
@Nonnull
public static Tensor eval(int pixels, @Nonnull PipelineNetwork network, int tileSize, @Nonnull Tensor... image) {
Tensor tensor1 = RefUtil.get(RefArrays.stream(image).flatMap(img -> {
int[] imageDimensions = img.getDimensions();
return RefArrays.stream(TiledTrainable.selectors(0, imageDimensions[0], imageDimensions[1], tileSize, false))
.map(RefUtil.wrapInterface((Function) selector -> {
//log.info(selector.toString());
Tensor tile = Result.getData0(selector.eval(img.addRef()));
selector.freeRef();
int[] tileDimensions = tile.getDimensions();
Tensor tensor = Result.getData0(network.eval(tile));
tensor.scaleInPlace(tileDimensions[0] * tileDimensions[1]);
return tensor;
}, img));
}).reduce((a, b) -> {
a.addInPlace(b);
return a;
}));
network.freeRef();
tensor1.scaleInPlace(1.0 / pixels);
//log.info(selector.toString());
Tensor map = tensor1.map(x -> {
if (Double.isFinite(x)) {
return x;
} else {
return 0;
}
});
tensor1.freeRef();
return map;
}
@Nonnull
public static UUID getAppendUUID(@Nonnull PipelineNetwork network, @Nonnull Class layerClass) {
DAGNode head = network.getHead();
network.freeRef();
Layer layer = head.getLayer();
head.freeRef();
if (null == layer)
return UUID.randomUUID();
UUID uuid = UUID.nameUUIDFromBytes((layer.getId().toString() + layerClass.getName()).getBytes());
layer.freeRef();
return uuid;
}
@Nonnull
@Override
public PipelineNetwork build(@Nonnull VisualModifierParameters visualModifierParameters) {
final PipelineNetwork pipelineNetwork = buildWithModel(visualModifierParameters.getNetwork(), null,
visualModifierParameters.getStyle());
visualModifierParameters.freeRef();
return pipelineNetwork;
}
@Nonnull
public PipelineNetwork buildWithModel(PipelineNetwork network, @Nullable Tensor cov, @Nonnull Tensor... images) {
PipelineNetwork copyPipeline = network.copyPipeline();
RefUtil.freeRef(network);
network = copyPipeline;
MultiPrecision.setPrecision(network.addRef(), precision);
assert network != null;
GramianLayer gramianLayerMultiPrecision = new GramianLayer(getAppendUUID(network.addRef(), GramianLayer.class));
gramianLayerMultiPrecision.setPrecision(precision);
network.add(gramianLayerMultiPrecision).freeRef();
int pixels = RefArrays.stream(RefUtil.addRef(images)).mapToInt(x -> {
int[] dimensions = x.getDimensions();
x.freeRef();
return dimensions[0] * dimensions[1];
}).sum();
if (null == cov) {
RefUtil.freeRef(cov);
cov = eval(pixels == 0 ? 1 : pixels, network.addRef(), getTileSize(), images);
} else {
RefUtil.freeRef(images);
}
double mag = balanced ? cov.rms() : 1;
network.add(loss(cov, mag, isAveraging())).freeRef();
network.freeze();
return network;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy