com.simiacryptus.mindseye.art.ops.GramMatrixEnhancer Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.art.ops;
import com.simiacryptus.mindseye.art.ArtSettings;
import com.simiacryptus.mindseye.art.VisualModifier;
import com.simiacryptus.mindseye.art.VisualModifierParameters;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.lang.cudnn.MultiPrecision;
import com.simiacryptus.mindseye.lang.cudnn.Precision;
import com.simiacryptus.mindseye.layers.cudnn.AvgReducerLayer;
import com.simiacryptus.mindseye.layers.cudnn.GramianLayer;
import com.simiacryptus.mindseye.layers.cudnn.ProductLayer;
import com.simiacryptus.mindseye.layers.cudnn.SumReducerLayer;
import com.simiacryptus.mindseye.layers.java.AbsActivationLayer;
import com.simiacryptus.mindseye.layers.java.BoundedActivationLayer;
import com.simiacryptus.mindseye.layers.java.LinearActivationLayer;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefString;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import java.util.UUID;
public class GramMatrixEnhancer implements VisualModifier {
private static final Logger log = LoggerFactory.getLogger(GramMatrixEnhancer.class);
private final Precision precision = Precision.Float;
private double min = -1;
private double max = 1;
private boolean averaging = true;
private boolean balanced = true;
private int tileSize = ArtSettings.INSTANCE().defaultTileSize;
private int padding = 8;
public double getMax() {
return max;
}
@Nonnull
public GramMatrixEnhancer setMax(double max) {
this.max = max;
return this;
}
public double getMin() {
return min;
}
@Nonnull
public GramMatrixEnhancer setMin(double min) {
this.min = min;
return this;
}
public int getTileSize() {
return tileSize;
}
@Nonnull
public GramMatrixEnhancer setTileSize(int tileSize) {
this.tileSize = tileSize;
return this;
}
public boolean isAveraging() {
return averaging;
}
@Nonnull
public GramMatrixEnhancer setAveraging(boolean averaging) {
this.averaging = averaging;
return this;
}
public boolean isBalanced() {
return balanced;
}
@Nonnull
public GramMatrixEnhancer setBalanced(boolean balanced) {
this.balanced = balanced;
return this;
}
@Nonnull
public PipelineNetwork loss(Tensor result, double mag, boolean averaging) {
PipelineNetwork rmsNetwork = new PipelineNetwork(1);
rmsNetwork.setName(RefString.format("-RMS[x*C] / %.0E", mag));
LinearActivationLayer linearActivationLayer = new LinearActivationLayer();
final double scale = mag == 0 ? 1 : -Math.pow(mag, -2);
linearActivationLayer.setScale(scale);
final Layer nextHead1 = averaging ? new AvgReducerLayer() : new SumReducerLayer();
BoundedActivationLayer boundedActivationLayer1 = new BoundedActivationLayer();
boundedActivationLayer1.setMinValue(getMin());
boundedActivationLayer1.setMaxValue(getMax());
rmsNetwork
.add(nextHead1,
rmsNetwork.add(boundedActivationLayer1,
rmsNetwork.add(linearActivationLayer,
rmsNetwork.add(new ProductLayer(), rmsNetwork.getInput(0), rmsNetwork.constValueWrap(result)))))
.freeRef();
return rmsNetwork;
}
@Nonnull
@Override
public PipelineNetwork build(@Nonnull VisualModifierParameters visualModifierParameters) {
PipelineNetwork network = visualModifierParameters.copyNetwork();
MultiPrecision.setPrecision(network.addRef(), precision);
final UUID uuid = GramMatrixMatcher.getAppendUUID(network.addRef(), GramianLayer.class);
int pixels = RefArrays.stream(visualModifierParameters.getStyle()).mapToInt(x -> {
int[] dimensions = x.getDimensions();
x.freeRef();
return dimensions[0] * dimensions[1];
}).sum();
final PipelineNetwork copy = network.copyPipeline();
assert copy != null;
GramianLayer gramianLayerMultiPrecision1 = new GramianLayer(uuid);
gramianLayerMultiPrecision1.setPrecision(precision);
copy.add(gramianLayerMultiPrecision1).freeRef();
Tensor result = GramMatrixMatcher.eval(pixels, copy, getTileSize(), padding, visualModifierParameters.getStyle());
Tensor mask = visualModifierParameters.getMask();
if (mask != null) {
network.add(new ProductLayer(),
network.getHead(),
network.constValue(
MomentMatcher.toMask(MomentMatcher.transform(network.addRef(), mask, Precision.Float))
)
).freeRef();
}
visualModifierParameters.freeRef();
GramianLayer gramianLayerMultiPrecision = new GramianLayer(uuid);
gramianLayerMultiPrecision.setPrecision(precision);
network.add(gramianLayerMultiPrecision).freeRef();
assert result != null;
double mag = balanced ? result.rms() : 1;
log.info(RefString.format("Adjust for %s by %s: %s", network.getName(), this.getClass().getSimpleName(), mag));
network.add(loss(result, mag, isAveraging())).freeRef();
network.freeze();
return network;
}
@Nonnull
public GramMatrixEnhancer setMinMax(double minValue, double maxValue) {
this.min = minValue;
this.max = maxValue;
return this;
}
public static class StaticGramMatrixEnhancer extends GramMatrixEnhancer {
@Nonnull
public PipelineNetwork loss(Tensor result, double mag, boolean averaging) {
result.freeRef();
PipelineNetwork rmsNetwork = new PipelineNetwork(1);
rmsNetwork.setName(RefString.format("-RMS[x*C] / %.0E", mag));
LinearActivationLayer linearActivationLayer = new LinearActivationLayer();
final double scale = -Math.pow(mag, -2);
linearActivationLayer.setScale(scale);
final Layer nextHead1 = averaging ? new AvgReducerLayer() : new SumReducerLayer();
BoundedActivationLayer boundedActivationLayer1 = new BoundedActivationLayer();
boundedActivationLayer1.setMinValue(getMin());
boundedActivationLayer1.setMaxValue(getMax());
rmsNetwork.add(nextHead1, rmsNetwork.add(boundedActivationLayer1,
rmsNetwork.add(linearActivationLayer, rmsNetwork.add(new AbsActivationLayer())))).freeRef();
return rmsNetwork;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy