com.simiacryptus.mindseye.art.photo.cuda.SmoothSolver_Cuda Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.art.photo.cuda;
import com.simiacryptus.mindseye.art.photo.SmoothSolver;
import com.simiacryptus.mindseye.art.photo.affinity.RasterAffinity;
import com.simiacryptus.mindseye.art.photo.topology.RasterTopology;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.ref.lang.RefAware;
import com.simiacryptus.ref.lang.RefUtil;
import javax.annotation.Nonnull;
import java.util.Arrays;
import java.util.List;
import java.util.stream.IntStream;
public class SmoothSolver_Cuda implements SmoothSolver {
public static @Nonnull
CudaSparseMatrix laplacian(@RefAware @Nonnull RasterAffinity affinity, @Nonnull @RefAware RasterTopology topology) {
List connectivity = topology.connectivity();
CudaSparseMatrix laplacian = laplacian(connectivity, affinity.affinityList(connectivity));
RefUtil.freeRef(affinity);
RefUtil.freeRef(topology);
return laplacian;
}
public static @Nonnull
CudaSparseMatrix laplacian(@Nonnull List graphEdges, @Nonnull List affinityList) {
final int pixels = graphEdges.size();
final double[] doubles = RasterAffinity.normalize(graphEdges, affinityList).stream()
.flatMapToDouble(x -> Arrays.stream(x)).toArray();
return new CudaSparseMatrix(new SparseMatrixFloat(
IntStream.range(0, pixels).flatMap(i1 -> Arrays.stream(graphEdges.get(i1))).toArray(),
IntStream.range(0, pixels).flatMap(i -> Arrays.stream(graphEdges.get(i)).map(j -> i)).toArray(),
SparseMatrixFloat.toFloat(doubles), pixels, pixels).sortAndPrune().assertSymmetric());
}
@Nonnull
@Override
public RefUnaryOperator solve(@Nonnull @RefAware RasterTopology topology, @Nonnull @RefAware RasterAffinity affinity, double lambda) {
double alpha = 1.0 / (1.0 + lambda);
final CudaSparseMatrix laplacian = laplacian(affinity, RefUtil.addRef(topology));
final SparseMatrixFloat forwardMatrix = forwardMatrix(laplacian, alpha);
CudaMatrixSolver solver = new CudaMatrixSolver(forwardMatrix, 1 - alpha);
return new TensorUnaryOperator(new SingleChannelWrapper(solver), topology.getDimensions(), topology);
}
@Nonnull
public SparseMatrixFloat forwardMatrix(@Nonnull CudaSparseMatrix laplacian, double alpha) {
SparseMatrixFloat sparseMatrixFloat = SparseMatrixFloat.identity(laplacian.matrix.rows).minus(laplacian.matrix.scale(alpha));
laplacian.freeRef();
return sparseMatrixFloat;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy