com.simiacryptus.mindseye.eval.ArrayTrainable Maven / Gradle / Ivy
/*
* Copyright (c) 2018 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.eval;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.Tensor;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.List;
/**
* Basic training component which evaluates a static array of data on a network. Evaluation is subject to batch-size
* conditions to manage execution memory requirements.
*/
public class ArrayTrainable extends BatchedTrainable implements TrainableDataMask {
@Nullable
private Tensor[][] trainingData;
/**
* Instantiates a new Array trainable.
*
* @param inner the heapCopy
* @param trainingData the training data
*/
public ArrayTrainable(DataTrainable inner, @Nonnull Tensor[]... trainingData) {
this(inner, trainingData, trainingData.length);
}
/**
* Instantiates a new Array trainable.
*
* @param inner the heapCopy
* @param trainingData the training data
* @param batchSize the batch size
*/
public ArrayTrainable(DataTrainable inner, @Nonnull Tensor[][] trainingData, int batchSize) {
super(inner, batchSize);
this.trainingData = trainingData;
for (@Nonnull Tensor[] tensors : trainingData) {
for (@Nonnull Tensor tensor : tensors) {
tensor.addRef(this);
}
}
}
/**
* Instantiates a new Array trainable.
*
* @param network the network
* @param batchSize the batch size
*/
public ArrayTrainable(final Layer network, final int batchSize) {
this(null, network, batchSize);
}
/**
* Instantiates a new Array trainable.
*
* @param trainingData the training data
* @param network the network
*/
public ArrayTrainable(@Nonnull final Tensor[][] trainingData, final Layer network) {
this(trainingData, network, trainingData.length);
}
/**
* Instantiates a new Array trainable.
*
* @param trainingData the training data
* @param network the network
* @param batchSize the batch size
*/
public ArrayTrainable(@Nullable final Tensor[][] trainingData, final Layer network, final int batchSize) {
super(network, batchSize);
this.trainingData = trainingData;
if (null != trainingData) for (@Nonnull Tensor[] tensors : trainingData) {
for (@Nonnull Tensor tensor : tensors) {
tensor.addRef(this);
}
}
}
@Nullable
@Override
public Tensor[][] getData() {
return trainingData;
}
@Override
public ArrayTrainable setVerbose(final boolean verbose) {
return (ArrayTrainable) super.setVerbose(verbose);
}
@Override
protected void _free() {
for (@Nonnull Tensor[] tensors : trainingData) {
for (@Nonnull Tensor tensor : tensors) {
tensor.freeRef();
}
}
super._free();
}
@Nonnull
@Override
public Trainable setData(@Nonnull final List tensors) {
for (@Nonnull Tensor[] ts : tensors) {
for (@Nonnull Tensor tensor : ts) {
tensor.addRef(this);
}
}
if (null != trainingData) for (@Nonnull Tensor[] ts : trainingData) {
for (@Nonnull Tensor tensor : ts) {
tensor.freeRef();
}
}
trainingData = tensors.toArray(new Tensor[][]{});
return this;
}
/**
* Sets training data.
*
* @param tensors the training data
*/
public void setTrainingData(@Nonnull final Tensor[][] tensors) {
for (@Nonnull Tensor[] ts : tensors) {
for (@Nonnull Tensor tensor : ts) {
tensor.addRef(this);
}
}
if (null != trainingData) for (@Nonnull Tensor[] ts : trainingData) {
for (@Nonnull Tensor tensor : ts) {
tensor.freeRef();
}
}
this.trainingData = tensors;
}
@Nonnull
@Override
public ArrayTrainable setMask(boolean... mask) {
return (ArrayTrainable) super.setMask(mask);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy