com.simiacryptus.mindseye.eval.BatchedTrainable Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-core Show documentation
Show all versions of mindseye-core Show documentation
Core Neural Networks Framework
/*
* Copyright (c) 2018 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.eval;
import com.google.common.collect.Lists;
import com.simiacryptus.lang.TimedResult;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.PointSample;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.opt.TrainingMonitor;
import javax.annotation.Nonnull;
import java.util.Arrays;
import java.util.List;
/**
* Base class to manage batched execution, where a data setByCoord is executed in segments in order to manage execution
* memory requirements.
*/
public abstract class BatchedTrainable extends TrainableWrapper implements DataTrainable {
/**
* The Batch size.
*/
protected final int batchSize;
private boolean verbose = false;
/**
* Instantiates a new Batched trainable.
*
* @param inner the heapCopy
* @param batchSize the batch size
*/
public BatchedTrainable(final DataTrainable inner, final int batchSize) {
super(inner);
this.batchSize = batchSize;
}
/**
* Instantiates a new Batched trainable.
*
* @param network the network
* @param batchSize the batch size
*/
public BatchedTrainable(final Layer network, final int batchSize) {
this(new BasicTrainable(network), batchSize);
getInner().freeRef();
}
/**
* Gets batch size.
*
* @return the batch size
*/
public int getBatchSize() {
return batchSize;
}
@Override
public PointSample measure(final TrainingMonitor monitor) {
@Nonnull final List tensors = Arrays.asList(getData());
TimedResult timedResult = TimedResult.time(() -> {
if (batchSize < tensors.size()) {
final int batches = (int) Math.ceil(tensors.size() * 1.0 / batchSize);
final int evenBatchSize = (int) Math.ceil(tensors.size() * 1.0 / batches);
@Nonnull final List> collection = Lists.partition(tensors, evenBatchSize);
return collection.stream().map(trainingData -> {
if (batchSize < trainingData.size()) {
throw new RuntimeException();
}
getInner().setData(trainingData);
return super.measure(monitor);
}).reduce((a, b) -> a.add(b)).get();
} else {
getInner().setData(tensors);
return super.measure(monitor);
}
});
if (null != monitor && isVerbose()) {
monitor.log(String.format("Evaluated %s items in %.4fs (%s/%s)", tensors.size(), timedResult.timeNanos / 1e9, timedResult.result.getMean(), timedResult.result.delta.getMagnitude()));
}
return timedResult.result;
}
/**
* Is verbose boolean.
*
* @return the boolean
*/
public boolean isVerbose() {
return verbose;
}
/**
* Sets verbose.
*
* @param verbose the verbose
* @return the verbose
*/
public BatchedTrainable setVerbose(final boolean verbose) {
this.verbose = verbose;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy