com.simiacryptus.mindseye.eval.CachedTrainable Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-core Show documentation
Show all versions of mindseye-core Show documentation
Core Neural Networks Framework
/*
* Copyright (c) 2018 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.eval;
import com.simiacryptus.mindseye.lang.PointSample;
import com.simiacryptus.mindseye.opt.TrainingMonitor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import java.util.ArrayList;
import java.util.List;
/**
* A wrapper which maintains a hisotry of N prior evaluations. If a detectable repeated evaluation is requested, the
* cached result is used.
*
* @param the type parameter
*/
public class CachedTrainable extends TrainableWrapper {
private static final Logger log = LoggerFactory.getLogger(CachedTrainable.class);
private final List history = new ArrayList<>();
private int historySize = 3;
private boolean verbose = true;
/**
* Instantiates a new Cached trainable.
*
* @param inner the heapCopy
*/
public CachedTrainable(final T inner) {
super(inner);
}
@Nonnull
@Override
public CachedTrainable extends Trainable> cached() {
return this;
}
/**
* Gets history size.
*
* @return the history size
*/
public int getHistorySize() {
return historySize;
}
/**
* Sets history size.
*
* @param historySize the history size
* @return the history size
*/
@Nonnull
public CachedTrainable setHistorySize(final int historySize) {
this.historySize = historySize;
return this;
}
/**
* Is verbose boolean.
*
* @return the boolean
*/
public boolean isVerbose() {
return verbose;
}
/**
* Sets verbose.
*
* @param verbose the verbose
* @return the verbose
*/
@Nonnull
public CachedTrainable setVerbose(final boolean verbose) {
this.verbose = verbose;
return this;
}
@Override
public PointSample measure(final TrainingMonitor monitor) {
for (@Nonnull final PointSample result : history) {
if (!result.weights.isDifferent()) {
if (isVerbose()) {
log.info(String.format("Returning cached value; %s buffers unchanged since %s => %s",
result.weights.getMap().size(), result.rate, result.getMean()));
}
return result.copyFull();
}
}
final PointSample result = super.measure(monitor);
history.add(result.copyFull());
while (getHistorySize() < history.size()) {
history.remove(0);
}
return result;
}
@Override
public boolean reseed(final long seed) {
history.clear();
return super.reseed(seed);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy