com.simiacryptus.mindseye.lang.ConstantResult Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-core Show documentation
Show all versions of mindseye-core Show documentation
Core Neural Networks Framework
/*
* Copyright (c) 2018 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.lang;
import javax.annotation.Nonnull;
import java.util.Arrays;
import java.util.UUID;
import java.util.stream.IntStream;
/**
* A special type of Result which ignores backpropigation; it has a constant value.
*/
public final class ConstantResult extends Result {
/**
* Instantiates a new Nn constant.
*
* @param data the data
*/
public ConstantResult(final Tensor... data) {
this(TensorArray.create(data));
}
/**
* Instantiates a new Nn constant.
*
* @param tensorArray
*/
public ConstantResult(TensorArray tensorArray) {
super(tensorArray, (@Nonnull final DeltaSet buffer, @Nonnull final TensorList tensorList) -> {
});
}
/**
* Instantiates a new Nn constant.
*
* @param tensorList the tensor array
*/
public ConstantResult(final TensorList tensorList) {
super(tensorList, (@Nonnull final DeltaSet buffer, @Nonnull final TensorList data) -> {
});
}
/**
* Batch result array nn result [ ].
*
* @param input the batch data
* @return the nn result [ ]
*/
public static Result[] batchResultArray(@Nonnull final Tensor[]... input) {
if (null == input) throw new IllegalArgumentException();
return IntStream.range(0, input[0].length).mapToObj(index -> IntStream.range(0, input.length)
.mapToObj(id -> input[id][index])
.toArray(i -> new Tensor[i]))
.map(tensors -> TensorArray.create(tensors))
.map(tensorArray -> new ConstantResult(tensorArray))
.toArray(x -> new Result[x]);
}
/**
* Single result array nn result [ ].
*
* @param input the input
* @return the nn result [ ]
*/
public static Result[] singleResultArray(@Nonnull final Tensor[] input) {
return Arrays.stream(input).map((@Nonnull final Tensor x) -> new ConstantResult(TensorArray.create(x))).toArray(i -> new Result[i]);
}
/**
* Single result array nn result [ ].
*
* @param input the input
* @return the nn result [ ]
*/
public static Result[] singleResultArray(@Nonnull final Tensor[][] input) {
return Arrays.stream(input).map((@Nonnull final Tensor[] x) -> new ConstantResult(TensorArray.create(x))).toArray(i -> new Result[i]);
}
@Override
public boolean isAlive() {
return false;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy