com.simiacryptus.mindseye.network.CountingResult Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-core Show documentation
Show all versions of mindseye-core Show documentation
Core Neural Networks Framework
/*
* Copyright (c) 2018 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.network;
import com.simiacryptus.mindseye.lang.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import java.util.LinkedList;
import java.util.UUID;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.BiConsumer;
import java.util.stream.Stream;
/**
* A result type for evaluating the backpropigation phase of an Acyclic Directed Graph. Since the result of a given
* compoent in a network can be used multiple times, we can improve efficiency of backprop by accumulating all the
* backpropigating evalInputDelta signals into a single signal before evaluating further backwards.
*/
public class CountingResult extends Result {
/**
* The constant logger.
*/
protected static final Logger logger = LoggerFactory.getLogger(CountingResult.class);
/**
* The Inner.
*/
@Nonnull
private final Result inner;
/**
* Instantiates a new Counting nn result.
*
* @param inner the heapCopy
*/
public CountingResult(@Nonnull final Result inner) {
super(inner.getData(), new CountingAccumulator(inner));
this.inner = inner;
inner.addRef();
}
/**
* Instantiates a new Counting result.
*
* @param r the r
* @param samples the samples
*/
public CountingResult(final Result r, final int samples) {
this(r);
getAccumulator().references.set(samples);
}
@Nonnull
@Override
public CountingAccumulator getAccumulator() {
return (CountingAccumulator) super.getAccumulator();
}
@Override
protected void _free() {
inner.freeRef();
((CountingAccumulator) accumulator).freeRef();
}
@Override
public boolean isAlive() {
return inner.isAlive();
}
/**
* The type Counting accumulator.
*/
static class CountingAccumulator extends ReferenceCountingBase implements BiConsumer, TensorList> {
@Nonnull
private final AtomicInteger references;
@Nonnull
private final AtomicBoolean hasAccumulated;
private final Result inner;
@Nonnull
private final LinkedList passbackBuffers;
@Nonnull
private final AtomicInteger accumulations;
/**
* Instantiates a new Counting accumulator.
*
* @param inner the inner
*/
public CountingAccumulator(Result inner) {
this.inner = inner;
this.inner.addRef();
references = new AtomicInteger(0);
hasAccumulated = new AtomicBoolean(false);
passbackBuffers = new LinkedList<>();
accumulations = new AtomicInteger(0);
}
/**
* Increment counting nn result.
*
* @return the counting nn result
*/
public int increment() {
return this.references.incrementAndGet();
}
/**
* Gets count.
*
* @return the count
*/
public int getCount() {
return this.references.get();
}
@Override
public void accept(DeltaSet buffer, @Nonnull TensorList data) {
//assert null == CudaSystem.getThreadHandle();
assertAlive();
data.assertAlive();
if (1 >= references.get()) {
data.addRef();
inner.accumulate(buffer, data);
} else {
@Nonnull TensorList reduced = null;
synchronized (passbackBuffers) {
assert passbackBuffers.stream().allMatch(x -> x.assertAlive());
passbackBuffers.add(data);
data.addRef();
if (passbackBuffers.size() > CoreSettings.INSTANCE().backpropAggregationSize) {
Stream stream = passbackBuffers.stream();
if (!CoreSettings.INSTANCE().isSingleThreaded()) stream = stream.parallel();
//x.addRef();
@Nonnull TensorList compacted = stream.reduce((a, b) -> {
TensorList c;
c = a.addAndFree(b);
b.freeRef();
return c;
}).get();
//passbackBuffers.stream().distinct().filter((TensorList x) -> x != reduced).forEach(t -> t.freeRef());
passbackBuffers.clear();
passbackBuffers.add(compacted);
assert passbackBuffers.stream().allMatch(x -> x.assertAlive());
}
if (accumulations.incrementAndGet() == references.get()) {
Stream stream = passbackBuffers.stream();
if (!CoreSettings.INSTANCE().isSingleThreaded()) stream = stream.parallel();
reduced = stream.reduce((a, b) -> {
TensorList c;
c = a.addAndFree(b);
b.freeRef();
return c;
}).get();
passbackBuffers.clear();
}
assert passbackBuffers.stream().allMatch(x -> x.assertAlive());
}
if (null != reduced) {
inner.accumulate(buffer, reduced);
accumulations.set(0);
}
}
}
@Override
protected void _free() {
synchronized (passbackBuffers) {
passbackBuffers.stream().forEach(t -> t.freeRef());
passbackBuffers.clear();
}
this.inner.freeRef();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy