com.simiacryptus.mindseye.eval.BatchedTrainable Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-core Show documentation
Show all versions of mindseye-core Show documentation
Core Neural Networks Framework
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.eval;
import com.simiacryptus.lang.TimedResult;
import com.simiacryptus.lang.UncheckedSupplier;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.PointSample;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.opt.TrainingMonitor;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.*;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.function.Function;
public abstract class BatchedTrainable extends TrainableWrapper implements DataTrainable {
protected final int batchSize;
private boolean verbose = false;
public BatchedTrainable(final DataTrainable inner, final int batchSize) {
super(inner);
this.batchSize = batchSize;
}
public BatchedTrainable(@Nullable final Layer network, final int batchSize) {
this(new BasicTrainable(network), batchSize);
}
public int getBatchSize() {
return batchSize;
}
public boolean isVerbose() {
return verbose;
}
public void setVerbose(boolean verbose) {
this.verbose = verbose;
}
@Override
public PointSample measure(@Nullable final TrainingMonitor monitor) {
@Nonnull final RefList tensors = RefArrays.asList(getData());
int size = tensors.size();
TimedResult timedResult = TimedResult
.time(RefUtil.wrapInterface((UncheckedSupplier) () -> {
DataTrainable inner = getInner();
if (batchSize < size) {
final int batches = (int) Math.ceil(size * 1.0 / batchSize);
final int evenBatchSize = (int) Math.ceil(size * 1.0 / batches);
@Nonnull final RefList> collection = RefLists.partition(tensors.addRef(), evenBatchSize);
PointSample temp_36_0001 = RefUtil.get(collection.stream()
.map(RefUtil.wrapInterface((Function, PointSample>) trainingData -> {
if (batchSize < trainingData.size()) {
trainingData.freeRef();
throw new RuntimeException();
}
assert inner != null;
inner.setData(trainingData.addRef());
trainingData.freeRef();
PointSample measure = super.measure(monitor);
inner.setData(new RefArrayList<>());
return measure;
}, inner)).reduce((a, b) -> {
PointSample temp_36_0002 = a.add(b == null ? null : b.addRef());
if (null != b)
b.freeRef();
a.freeRef();
return temp_36_0002;
}));
collection.freeRef();
return temp_36_0001;
} else {
assert inner != null;
inner.setData(tensors.addRef());
PointSample measure = super.measure(monitor);
inner.setData(new RefArrayList<>());
inner.freeRef();
return measure;
}
}, tensors));
PointSample result = timedResult.getResult();
if (null != monitor && isVerbose()) {
monitor.log(RefString.format("Evaluated %s items in %.4fs (%s/%s)", size, timedResult.timeNanos / 1e9,
result.getMean(), result.delta.getMagnitude()));
}
timedResult.freeRef();
return result;
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
BatchedTrainable addRef() {
return (BatchedTrainable) super.addRef();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy