com.simiacryptus.mindseye.lang.ConstantResult Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-core Show documentation
Show all versions of mindseye-core Show documentation
Core Neural Networks Framework
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.lang;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.UUID;
import java.util.function.IntFunction;
public final class ConstantResult extends Result {
public ConstantResult(@Nullable final Tensor... data) {
this(new TensorArray(data));
}
public ConstantResult(@Nonnull TensorArray tensorArray) {
super(tensorArray);
}
public ConstantResult(@Nonnull final TensorList tensorList) {
super(tensorList, new Accumulator() {
@Override
public void accept(@Nullable DeltaSet buffer, @Nullable TensorList data) {
if (null != data)
data.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
});
}
@Override
public boolean isAlive() {
return false;
}
@Nonnull
public static Result[] batchResultArray(@Nonnull final Tensor[]... input) {
return RefIntStream.range(0, input[0].length)
.mapToObj(
RefUtil.wrapInterface((IntFunction) x ->
RefIntStream.range(0, input.length)
.mapToObj(y -> input[y][x].addRef())
.toArray(Tensor[]::new),
input))
.map(TensorArray::new)
.map(ConstantResult::new)
.toArray(Result[]::new);
}
@Nonnull
public static Result[] singleResultArray(@Nonnull final Tensor[] input) {
return RefArrays.stream(input)
.map(tensor -> new ConstantResult(new TensorArray(tensor)))
.toArray(Result[]::new);
}
@Nonnull
public static Result[] singleResultArray(@Nonnull final Tensor[][] input) {
return RefArrays.stream(input)
.map((@Nonnull final Tensor[] x) -> new ConstantResult(new TensorArray(x)))
.toArray(Result[]::new);
}
@Nonnull
public @Override
@SuppressWarnings("unused")
ConstantResult addRef() {
return (ConstantResult) super.addRef();
}
@Override
public void _free() {
super._free();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy