com.simiacryptus.mindseye.layers.cudnn.ImgCropLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2018 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.Stream;
/**
* Reduces the resolution of the input by selecting a centered window. The output png will have the same number of
* color bands.
*/
@SuppressWarnings("serial")
public class ImgCropLayer extends LayerBase implements MultiPrecision {
private static final Logger log = LoggerFactory.getLogger(ImgCropLayer.class);
private int sizeX;
private int sizeY;
private Precision precision = Precision.Double;
/**
* Instantiates a new Img eval key.
*/
private ImgCropLayer() {
}
/**
* Instantiates a new Img crop key.
*
* @param sizeX the size x
* @param sizeY the size y
*/
public ImgCropLayer(int sizeX, int sizeY) {
this.sizeX = sizeX;
this.sizeY = sizeY;
assert 0 < sizeX;
assert 0 < sizeY;
}
/**
* Instantiates a new Img eval key.
*
* @param json the json
* @param rs the rs
*/
protected ImgCropLayer(@Nonnull final JsonObject json, Map rs) {
super(json);
sizeX = json.get("sizeX").getAsInt();
sizeY = json.get("sizeY").getAsInt();
this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString());
assert 0 < sizeX;
assert 0 < sizeY;
}
/**
* From json img eval key.
*
* @param json the json
* @param rs the rs
* @return the img eval key
*/
public static ImgCropLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ImgCropLayer(json, rs);
}
/**
* Copy cuda tensor.
*
* @param gpu the gpu
* @param input the input tensor
* @param length the length
* @param inputDimensions the input dimensions
* @param outputDimensions the output dimensions
* @param dirty the dirty
* @param precision the precision
* @return the cuda tensor
*/
public static CudaTensor copy(final CudnnHandle gpu, final CudaTensor input, final int length, final int[] inputDimensions, final int[] outputDimensions, final boolean dirty, Precision precision) {
if (3 != inputDimensions.length) throw new IllegalArgumentException("inputDimensions.length");
if (3 != outputDimensions.length) throw new IllegalArgumentException("dimOut.length");
if (inputDimensions[2] != outputDimensions[2]) {
throw new IllegalArgumentException(String.format("%d != %d", inputDimensions[2], outputDimensions[2]));
}
//log.info(String.format("offset=%d,%d", offsetX, offsetY));
@Nonnull final int[] viewDim = getViewDimensions(inputDimensions, outputDimensions);
int sourceOffset = 0;
int destinationOffset = 0;
if (inputDimensions[0] < outputDimensions[0]) {
destinationOffset += (outputDimensions[0] - inputDimensions[0]) / 2;
} else {
sourceOffset += (inputDimensions[0] - outputDimensions[0]) / 2;
}
if (inputDimensions[1] < outputDimensions[1]) {
destinationOffset += outputDimensions[0] * ((outputDimensions[1] - inputDimensions[1]) / 2);
} else {
sourceOffset += input.descriptor.hStride * ((inputDimensions[1] - outputDimensions[1]) / 2);
}
assert sourceOffset >= 0;
assert destinationOffset >= 0;
assert sourceOffset + Tensor.length(viewDim) <= Tensor.length(inputDimensions);
assert destinationOffset + Tensor.length(viewDim) <= Tensor.length(outputDimensions);
@Nonnull final CudaDevice.CudaTensorDescriptor sourceViewDescriptor = gpu.newTensorDescriptor(
precision,//
length,//
viewDim[2],//
viewDim[1],//
viewDim[0],//
input.descriptor.nStride,//
input.descriptor.cStride,//
input.descriptor.hStride,//
input.descriptor.wStride);
CudaMemory inputTensorMemory = input.getMemory(gpu);
try {
if (Arrays.equals(viewDim, outputDimensions)) {
assert sourceOffset >= 0;
assert destinationOffset == 0;
return CudaTensor.wrap(inputTensorMemory.withByteOffset(sourceOffset * precision.size), sourceViewDescriptor, precision);
}
@Nonnull final CudaDevice.CudaTensorDescriptor destinationViewDescriptor = gpu.newTensorDescriptor(
precision,//
length,//
viewDim[2],//
viewDim[1],//
viewDim[0],//
outputDimensions[2] * outputDimensions[1] * outputDimensions[0],//
outputDimensions[1] * outputDimensions[0],//
outputDimensions[0],//
1);
@Nonnull final CudaMemory outputBuffer = gpu.allocate((long) length * outputDimensions[2] * outputDimensions[1] * outputDimensions[0] * precision.size, MemoryType.Managed.normalize(), dirty);
CudaSystem.handle(gpu.cudnnTransformTensor(
precision.getPointer(1.0),
sourceViewDescriptor.getPtr(), inputTensorMemory.getPtr().withByteOffset(sourceOffset * precision.size),
precision.getPointer(0.0),
destinationViewDescriptor.getPtr(), outputBuffer.getPtr().withByteOffset(destinationOffset * precision.size)
));
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
inputTensorMemory.dirty();
outputBuffer.dirty();
Stream.of(sourceViewDescriptor, destinationViewDescriptor).forEach(ReferenceCounting::freeRef);
CudaDevice.CudaTensorDescriptor descriptorCudaResource = gpu.newTensorDescriptor(
precision,//
length,//
outputDimensions[2],//
outputDimensions[1],//
outputDimensions[0],//
outputDimensions[2] * outputDimensions[1] * outputDimensions[0],//
outputDimensions[1] * outputDimensions[0],//
outputDimensions[0],//
1);
return CudaTensor.wrap(outputBuffer, descriptorCudaResource, precision);
} finally {
inputTensorMemory.freeRef();
}
}
/**
* Get view dimensions int [ ].
*
* @param sourceDimensions the source dimensions
* @param destinationDimensions the destination dimensions
* @return the int [ ]
*/
@Nonnull
public static int[] getViewDimensions(int[] sourceDimensions, int[] destinationDimensions) {
@Nonnull final int[] viewDim = new int[3];
Arrays.parallelSetAll(viewDim, i -> Math.min(sourceDimensions[i], destinationDimensions[i]));
return viewDim;
}
/**
* Gets compatibility key.
*
* @return the compatibility key
*/
@Nonnull
public Layer getCompatibilityLayer() {
return this.as(com.simiacryptus.mindseye.layers.java.ImgCropLayer.class);
}
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled()) return getCompatibilityLayer().evalAndFree(inObj);
assert 1 == inObj.length;
final Result input = inObj[0];
final TensorList inputData = input.getData();
assert 3 == inputData.getDimensions().length;
final int length = inputData.length();
@Nonnull int[] dimIn = inputData.getDimensions();
if (dimIn[0] == sizeX && dimIn[1] == sizeY) {
return input;
}
@Nonnull final int[] dimOut = Arrays.copyOf(dimIn, 3);
dimOut[0] = sizeX;
dimOut[1] = sizeY;
final TensorList outputData = CudaSystem.run(gpu -> {
@Nullable final CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
inputData.freeRef();
boolean dirty = dimOut[0] <= dimIn[0] && dimOut[1] <= dimIn[1];
assert dimOut[0] > 0;
assert dimOut[1] > 0;
assert dimOut[2] > 0;
CudaTensor cudaTensor = copy(gpu, inputTensor, length, dimIn, dimOut, dirty, precision);
Stream.of(inputTensor).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(cudaTensor, length, dimOut, precision);
}, inputData);
int[] output_dimensions = outputData.getDimensions();
int output_length = outputData.length();
return new Result(outputData, (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
if (!Arrays.equals(delta.getDimensions(), output_dimensions)) {
throw new AssertionError(Arrays.toString(delta.getDimensions()) + " != " + Arrays.toString(output_dimensions));
}
if (delta.length() != output_length) {
throw new AssertionError(delta.length() + " != " + output_length);
}
assert delta.length() == length;
if (input.isAlive()) {
final TensorList passbackTensorList = CudaSystem.run(gpu -> {
@Nullable final CudaTensor errorPtr = gpu.getTensor(delta, precision, MemoryType.Device, false);
delta.freeRef();
boolean dirty = dimOut[0] >= dimIn[0] && dimOut[1] >= dimIn[1];
CudaTensor cudaTensor = copy(gpu, errorPtr, length, dimOut, dimIn, dirty, precision);
Stream.of(errorPtr).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(cudaTensor, length, dimIn, precision);
}, delta);
input.accumulate(buffer, passbackTensorList);
} else {
delta.freeRef();
}
}) {
@Override
public void accumulate(final DeltaSet buffer, final TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
}
@Override
public boolean isAlive() {
return Arrays.stream(inObj).anyMatch(x -> x.isAlive());
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("sizeY", sizeY);
json.addProperty("sizeX", sizeX);
json.addProperty("precision", precision.name());
return json;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
@Override
public Precision getPrecision() {
return precision;
}
@Nonnull
@Override
public ImgCropLayer setPrecision(final Precision precision) {
this.precision = precision;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy