com.simiacryptus.mindseye.layers.cudnn.ImgTileCycleLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2018 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
/**
* Reduces the resolution of the input by selecting a centered window. The output png will have the same number of
* color bands.
*/
@SuppressWarnings("serial")
public class ImgTileCycleLayer extends LayerBase implements MultiPrecision {
private static final Logger log = LoggerFactory.getLogger(ImgTileCycleLayer.class);
private double xPos = 0.5;
private double yPos = 0.5;
private Precision precision = Precision.Double;
/**
* Instantiates a new Img eval key.
*/
public ImgTileCycleLayer() {
}
/**
* Instantiates a new Img eval key.
*
* @param json the json
* @param rs the rs
*/
protected ImgTileCycleLayer(@Nonnull final JsonObject json, Map rs) {
super(json);
this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString());
}
/**
* From json img eval key.
*
* @param json the json
* @param rs the rs
* @return the img eval key
*/
public static ImgTileCycleLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ImgTileCycleLayer(json, rs);
}
/**
* Copy cuda tensor.
*
* @param gpu the gpu
* @param input the input tensor
* @param length the length
* @param precision the precision
* @param splitX the split x
* @param splitY the split y
* @return the cuda tensor
*/
public static CudaTensor copy(final CudnnHandle gpu, final CudaTensor input, final int length, Precision precision, final int splitX, final int splitY) {
CudaMemory inputTensorMemory = input.getMemory(gpu);
try {
@Nonnull final CudaDevice.CudaTensorDescriptor imageDescriptor = gpu.newTensorDescriptor(
precision,//
length,//
input.descriptor.channels,//
input.descriptor.height,//
input.descriptor.width,//
input.descriptor.nStride,//
input.descriptor.cStride,//
input.descriptor.hStride,//
input.descriptor.wStride);
@Nonnull final CudaMemory outputBuffer = gpu.allocate((long) length * imageDescriptor.nStride * precision.size, MemoryType.Managed.normalize(), true);
int splitY1 = splitY;
int splitY2 = input.descriptor.height - splitY1;
int splitX1 = splitX;
int splitX2 = input.descriptor.width - splitX1;
{
@Nonnull final CudaDevice.CudaTensorDescriptor tileDescriptor = gpu.newTensorDescriptor(
precision,//
length,//
input.descriptor.channels,//
splitY1,//
splitX1,//
input.descriptor.nStride,//
input.descriptor.cStride,//
input.descriptor.hStride,//
input.descriptor.wStride);
try {
CudaSystem.handle(gpu.cudnnTransformTensor(
precision.getPointer(1.0),
tileDescriptor.getPtr(), inputTensorMemory.getPtr().withByteOffset(0 * precision.size),
precision.getPointer(0.0),
tileDescriptor.getPtr(), outputBuffer.getPtr().withByteOffset((splitY2 * input.descriptor.hStride + splitX2 * input.descriptor.wStride) * precision.size)
));
} finally {
tileDescriptor.freeRef();
}
}
{
@Nonnull final CudaDevice.CudaTensorDescriptor tileDescriptor = gpu.newTensorDescriptor(
precision,//
length,//
input.descriptor.channels,//
splitY2,//
splitX1,//
input.descriptor.nStride,//
input.descriptor.cStride,//
input.descriptor.hStride,//
input.descriptor.wStride);
try {
CudaSystem.handle(gpu.cudnnTransformTensor(
precision.getPointer(1.0),
tileDescriptor.getPtr(), inputTensorMemory.getPtr().withByteOffset(splitY1 * input.descriptor.hStride * precision.size),
precision.getPointer(0.0),
tileDescriptor.getPtr(), outputBuffer.getPtr().withByteOffset(splitX2 * input.descriptor.wStride * precision.size)
));
} finally {
tileDescriptor.freeRef();
}
}
{
@Nonnull final CudaDevice.CudaTensorDescriptor tileDescriptor = gpu.newTensorDescriptor(
precision,//
length,//
input.descriptor.channels,//
splitY1,//
splitX2,//
input.descriptor.nStride,//
input.descriptor.cStride,//
input.descriptor.hStride,//
input.descriptor.wStride);
try {
CudaSystem.handle(gpu.cudnnTransformTensor(
precision.getPointer(1.0),
tileDescriptor.getPtr(), inputTensorMemory.getPtr().withByteOffset(splitX1 * input.descriptor.wStride * precision.size),
precision.getPointer(0.0),
tileDescriptor.getPtr(), outputBuffer.getPtr().withByteOffset(splitY2 * input.descriptor.hStride * precision.size)
));
} finally {
tileDescriptor.freeRef();
}
}
@Nonnull final CudaDevice.CudaTensorDescriptor tileDescriptor = gpu.newTensorDescriptor(
precision,//
length,//
input.descriptor.channels,//
splitY2,//
splitX2,//
input.descriptor.nStride,//
input.descriptor.cStride,//
input.descriptor.hStride,//
input.descriptor.wStride);
try {
CudaSystem.handle(gpu.cudnnTransformTensor(
precision.getPointer(1.0),
tileDescriptor.getPtr(), inputTensorMemory.getPtr().withByteOffset((splitY1 * input.descriptor.hStride + splitX1 * input.descriptor.wStride) * precision.size),
precision.getPointer(0.0),
tileDescriptor.getPtr(), outputBuffer.getPtr().withByteOffset(0 * precision.size)
));
} finally {
tileDescriptor.freeRef();
}
inputTensorMemory.dirty();
outputBuffer.dirty();
return CudaTensor.wrap(outputBuffer, imageDescriptor, precision);
} finally {
inputTensorMemory.freeRef();
}
}
/**
* Get view dimensions int [ ].
*
* @param sourceDimensions the source dimensions
* @param destinationDimensions the destination dimensions
* @return the int [ ]
*/
@Nonnull
public static int[] getViewDimensions(int[] sourceDimensions, int[] destinationDimensions) {
@Nonnull final int[] viewDim = new int[3];
Arrays.parallelSetAll(viewDim, i -> Math.min(sourceDimensions[i], destinationDimensions[i]));
return viewDim;
}
/**
* Gets compatibility key.
*
* @return the compatibility key
*/
@Nonnull
public Layer getCompatibilityLayer() {
return this.as(com.simiacryptus.mindseye.layers.java.ImgCropLayer.class);
}
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled()) return getCompatibilityLayer().evalAndFree(inObj);
assert 1 == inObj.length;
final Result input = inObj[0];
final TensorList inputData = input.getData();
assert 3 == inputData.getDimensions().length;
final int length = inputData.length();
@Nonnull int[] dimIn = inputData.getDimensions();
int splitX1 = (int) (dimIn[0] * getxPos());
int splitX2 = dimIn[0] - splitX1;
int splitY1 = (int) (dimIn[1] * getyPos());
int splitY2 = dimIn[1] - splitY1;
final TensorList outputData = CudaSystem.run(gpu -> {
@Nullable final CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
inputData.freeRef();
CudaTensor cudaTensor = copy(gpu, inputTensor, length, precision, splitX1, splitY1);
inputTensor.freeRef();
return CudaTensorList.wrap(cudaTensor, length, dimIn, precision);
}, inputData);
return new Result(outputData, (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
if (!Arrays.equals(delta.getDimensions(), outputData.getDimensions())) {
throw new AssertionError(Arrays.toString(delta.getDimensions()) + " != " + Arrays.toString(outputData.getDimensions()));
}
if (delta.length() != outputData.length()) {
throw new AssertionError(delta.length() + " != " + outputData.length());
}
assert delta.length() == length;
if (input.isAlive()) {
final TensorList passbackTensorList = CudaSystem.run(gpu -> {
@Nullable final CudaTensor errorPtr = gpu.getTensor(delta, precision, MemoryType.Device, false);
delta.freeRef();
CudaTensor cudaTensor = copy(gpu, errorPtr, length, precision, splitX2, splitY2);
errorPtr.freeRef();
return CudaTensorList.wrap(cudaTensor, length, dimIn, precision);
}, delta);
input.accumulate(buffer, passbackTensorList);
} else {
delta.freeRef();
}
}) {
@Override
public void accumulate(final DeltaSet buffer, final TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
}
@Override
public boolean isAlive() {
return Arrays.stream(inObj).anyMatch(x -> x.isAlive());
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("precision", precision.name());
return json;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
@Override
public Precision getPrecision() {
return precision;
}
@Nonnull
@Override
public ImgTileCycleLayer setPrecision(final Precision precision) {
this.precision = precision;
return this;
}
/**
* Gets pos.
*
* @return the pos
*/
public double getxPos() {
return xPos;
}
/**
* Gets pos.
*
* @return the pos
*/
public double getyPos() {
return yPos;
}
/**
* Sets x pos.
*
* @param xPos the x pos
* @return the x pos
*/
public ImgTileCycleLayer setXPos(double xPos) {
this.xPos = xPos;
return this;
}
/**
* Sets y pos.
*
* @param yPos the y pos
* @return the y pos
*/
public ImgTileCycleLayer setYPos(double yPos) {
this.yPos = yPos;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy