com.simiacryptus.mindseye.layers.cudnn.ValueLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2018 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import javax.annotation.Nonnull;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
/**
* This key does not require any input, and produces a constant output. This constant can be tuned by optimization
* processes.
*/
@SuppressWarnings("serial")
public class ValueLayer extends LayerBase {
private final Precision precision;
private final CudaTensorList tensorList;
/**
* Instantiates a new Const nn key.
*
* @param json the json
* @param resources the resources
*/
protected ValueLayer(@Nonnull final JsonObject json, Map resources) {
super(json);
this.precision = Precision.valueOf(json.get("precision").getAsString());
Tensor value = Tensor.fromJson(json.get("value"), resources);
this.tensorList = toDevice(value, precision);
value.freeRef();
}
/**
* Instantiates a new Const nn key.
*
* @param data the data
*/
public ValueLayer(final Tensor data) {
super();
this.precision = Precision.Float;
this.tensorList = toDevice(data, precision);
data.addRef();
this.frozen = true;
}
/**
* From json const nn key.
*
* @param json the json
* @param rs the rs
* @return the const nn key
*/
public static ValueLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ValueLayer(json, rs);
}
/**
* To device cuda tensor list.
*
* @param data the data
* @param precision the precision
* @return the cuda tensor list
*/
public CudaTensorList toDevice(final Tensor data, final Precision precision) {
if (null == data) return null;
return CudaSystem.run(gpu -> {
CudaMemory cudaMemory = gpu.allocate(data.length() * precision.size, MemoryType.Managed, true);
cudaMemory.write(precision, data.getData());
int[] dimensions = data.getDimensions();
CudaDevice.CudaTensorDescriptor tensorDescriptor = gpu.newTensorDescriptor(precision, 1, dimensions[2], dimensions[1], dimensions[0]);
return CudaTensorList.wrap(CudaTensor.wrap(cudaMemory, tensorDescriptor, precision), 1, dimensions, precision);
});
}
@Nonnull
@Override
public Result evalAndFree(@Nonnull final Result... array) {
assert 0 == array.length;
ValueLayer.this.tensorList.addRef();
return new Result(tensorList, (@Nonnull final DeltaSet buffer, @Nonnull final TensorList data) -> {
}) {
@Override
protected void _free() {
}
@Override
public boolean isAlive() {
return false;
}
};
}
@Override
protected void _free() {
tensorList.freeRef();
}
@Nonnull
@Override
public JsonObject getJson(Map resources, @Nonnull DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
Tensor tensor = tensorList.get(0);
json.add("value", tensor.toJson(resources, dataSerializer));
tensor.freeRef();
json.addProperty("precision", precision.name());
return json;
}
@Nonnull
@Override
public List state() {
Tensor tensor = tensorList.get(0);
List list = Arrays.asList(tensor.getData());
tensor.freeRef();
return list;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy