com.simiacryptus.mindseye.layers.cudnn.BandAvgReducerLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import jcuda.jcudnn.*;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.Stream;
/**
* Similar to the pooling key, but the pool size is always the png size. The output dimensions are always 1x1xN.
*/
@SuppressWarnings("serial")
public class BandAvgReducerLayer extends LayerBase implements MultiPrecision {
private Precision precision = Precision.Double;
private double alpha = 1.0;
/**
* Instantiates a new Pooling key.
*/
public BandAvgReducerLayer() {
super();
}
/**
* Instantiates a new Pooling key.
*
* @param json the json
*/
protected BandAvgReducerLayer(@Nonnull final JsonObject json) {
super(json);
precision = Precision.valueOf(json.get("precision").getAsString());
alpha = json.get("alpha").getAsDouble();
}
/**
* From json pooling key.
*
* @param json the json
* @param rs the rs
* @return the pooling key
*/
public static BandAvgReducerLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new BandAvgReducerLayer(json);
}
/**
* Gets compatibility key.
*
* @return the compatibility key
*/
@Nonnull
public Layer getCompatibilityLayer() {
throw new RuntimeException("Not Implemented");
}
@Nullable
@Override
public Result evalAndFree(final Result... inObj) {
if (!CudaSystem.isEnabled()) return getCompatibilityLayer().evalAndFree(inObj);
final Result input = inObj[0];
TensorList inputData = input.getData();
@Nonnull final int[] inputSize = inputData.getDimensions();
int length = inputData.length();
if (length <= 0) throw new AssertionError();
if (Tensor.length(inputData.getDimensions()) <= 0) return input;
final int bands = inputSize[2];
CudaTensorList result = CudaSystem.run(gpu -> {
CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, bands, 1, 1);
long size = (long) precision.size * outputDescriptor.nStride * length;
@Nonnull final CudaMemory outputPtr = gpu.allocate(size, MemoryType.Managed, true);
CudaResource reduceTensorDescriptor = gpu.cudnnCreateReduceTensorDescriptor(
cudnnReduceTensorOp.CUDNN_REDUCE_TENSOR_AVG, precision.code, cudnnNanPropagation.CUDNN_NOT_PROPAGATE_NAN,
cudnnReduceTensorIndices.CUDNN_REDUCE_TENSOR_NO_INDICES, cudnnIndicesType.CUDNN_32BIT_INDICES);
CudaMemory inputMemory = inputTensor.getMemory(gpu);
@Nonnull final CudaMemory workspacePtr = gpu.allocate(inputMemory.size, MemoryType.Device, true);
@Nonnull final CudaMemory indexPtr = gpu.allocate(12 * length, MemoryType.Device, false);
gpu.cudnnReduceTensor(reduceTensorDescriptor.getPtr(),
indexPtr.getPtr(), indexPtr.size, workspacePtr.getPtr(), workspacePtr.size,
precision.getPointer(alpha), inputTensor.descriptor.getPtr(), inputMemory.getPtr(),
precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr());
outputPtr.dirty();
inputMemory.dirty();
Stream.of(inputMemory, inputTensor, reduceTensorDescriptor, workspacePtr, indexPtr, inputData).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(CudaTensor.wrap(outputPtr, outputDescriptor, precision), length, new int[]{1, 1, bands}, precision);
});
int pixels = inputSize[0] * inputSize[1];
return new Result(result, (DeltaSet ctx, TensorList delta) -> {
TensorList passback;
passback = TensorArray.wrap(delta.stream().map(x -> {
Tensor tensor = new Tensor(inputSize[0], inputSize[1], inputSize[2])
.setByCoord(c -> x.get(c.getCoords()[2]) * alpha / pixels);
x.freeRef();
return tensor;
}).toArray(i -> new Tensor[i]));
// passback = CudaSystem.generate(gpu -> {
// CudaTensor deltaTensor = gpu.getTensor(evalInputDelta, precision, MemoryType.Device, true);
// @Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision,
// length, inputSize[2], inputSize[1], inputSize[0]);
// @Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
// CudaMemory deltaMemory = deltaTensor.getMemory(gpu);
// @Nonnull final CudaDevice.CudaTensorDescriptor inputDescriptor = gpu.newTensorDescriptor(precision,
// 1, 1, inputSize[1], inputSize[0]);
// for(int batch=0;batch resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("alpha", alpha);
json.addProperty("precision", precision.name());
return json;
}
@Override
public Precision getPrecision() {
return precision;
}
@Nonnull
@Override
public BandAvgReducerLayer setPrecision(final Precision precision) {
this.precision = precision;
return this;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
/**
* Gets alphaList.
*
* @return the alphaList
*/
public double getAlpha() {
return alpha;
}
/**
* Sets alphaList.
*
* @param alpha the alphaList
* @return the alphaList
*/
public BandAvgReducerLayer setAlpha(double alpha) {
this.alpha = alpha;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy